Page 68 - 2022-31-中国全科医学
P. 68

http://www.chinagp.net   E-mail:zgqkyx@chinagp.net.cn  ·3905·


           version of Beliefs about Medicines(BMQ-C),the Chinese version of 8-item Morisky Medication Adherence Scale(MMAS-8-C),
           and the Medication Knowledge Scale(MKS). Latent class analysis was used to classify the medication adherence. Demographic
           characteristics,medication use,medication knowledge and medication beliefs were compared by the class of medication adherence.
           Multiple Logistic regression was used to explore the associated factors of each class of medication adherence. Results The
           medication adherence of the participants was divided into three latent classes,namely subjective poor medication adherence,
           overall poor medication adherence,and overall good medication adherence,and the prevalence of the three classes was 18.0%,
           34.4% and 47.6%,respectively. The education level,occupational status after an illness,living situation,household monthly
           income per person,financial resources,prevalence of having pharmacist guidance,number of medications,frequency of taking
           medication,years of taking medication,the BMQ-C score,and MKS score in the participants differed significantly by the class of
           medication adherence(P<0.05). By multiple Logistic regression analysis,compared with patients with subjective poor medication
           adherence,those with overall good medication adherence had higher prevalence of having pharmacist guidance,and higher average
           scores of BMQ-C and MKS,and lower prevalence of retirement due to illness and offspring's support as the only financial resource
           (P<0.05). Compared with those with overall poor medication adherence,those with overall good medication adherence had higher
           prevalence of retirees,taking medication once a day,and having pharmacist guidance,as well as higher average scores of BMQ-C
           and MKS(P<0.05). Conclusion The medication adherence in these multiple chronic conditions patients could be classified into
           three latent classes. More attention should be given to those who were retired due to illness or financially supported by their children,
           because they were prone to having poor medication adherence. Those who had lower frequency of medication use,medication
           guidance from a pharmacist,and higher levels of medication knowledge and beliefs were prone to having good medication adherence.
               【Key words】 Multiple chronic conditions;Medication adherence;Latent class analysis;Root cause analysis


               随着社会经济的发展和人们生活方式的改变,患                           药依从性低的原因可分为四类:遗忘、担心副作用、突
           有多种慢性病的群体所占比例逐年攀升,世界卫生组                             发事件扰乱和多种原因。影响患者服药不依从行为的因
           织(WHO)于 2009 年将患有两种或两种以上慢性病                         素种类繁多,根据动机 - 行为(COM-B)模型大致可
           或复发性疾病定义为共病(multiple chronic conditions,            归为三类:患者坚持执行药物治疗方案的能力(如记忆
           MCCs) [1] 。《中国居民营养与慢性病状况报告》指出,                      力、用药知识等)、接受药物治疗方案的机会(如药物
           随着我国城市化、工业化、人口老龄化等进程不断加速,                           成本、医保参保类型、药师指导等)及坚持动机(服药
           以糖尿病、心脑血管疾病、癌症及慢性呼吸系统疾病等                            信念)。提高患者服药依从性时,应针对不同的原因采
           为代表的慢性病的患病率逐年上升,慢性病已成为威胁                            取不同的干预策略,而国内有关服药依从性类别划分的
           我国居民健康的“头号公敌”             [2] 。我国≥ 50 岁中老年          研究较少,干预措施的实施常采取“一刀切”的方式,
           人慢性病共病发生率为 61.9%          [3] ,慢性病共病现象在             如向所有患者提供服药提醒、药物知识宣教服务等,而
           中老年人群中普遍存在。诸多因素会影响慢性病的控制                            非根据患者服药不依从的具体原因对干预措施进行调
           效果。遵医嘱服药被认为是慢性病管理的有效措施                     [4] ,    整。因此,本研究通过 LCA 对慢性病共病患者服药依
           坚持服药与改善慢性病患者的临床结局和降低慢性病死                            从性进行分类,进一步明确我国慢性病共病患者服药依
           亡率有关    [5] ,药物不依从会导致患者出现更差的健康                      从性的类别及其影响因素,旨在为进一步制定个性化干
           结果和医疗保健成本的增加            [6] 。然而,慢性病共病患              预方案提供参考,优化慢性病共病患者的疾病管理。
           者的服药依从性现状不甚理想             [7-8] 。一项有关慢性病共           1 对象与方法
           病患者服药依从性现状的系统综述和 Meta 分析结果显                         1.1 研究对象 2021 年 6—9 月,采取便利抽样法,选
           示,服药依从性差的慢性病共病患者的比例高达 43%                   [9] 。   取于河南省 2 家综合性三级甲等医院住院治疗的慢性病
           目前,针对服药依从性的调查研究多聚焦特定人群,较                            共病患者为研究对象。纳入标准:(1)经二级及以上
           少考虑不同个体间的异质性,这也可能是服药依从性干                            医院确诊至少患有 2 种慢性病〔包括高血压、糖尿病、
           预效果有限的原因之一          [10] 。                          冠心病、脑卒中、慢性阻塞性肺疾病(COPD)、白内障、
               潜在类别分析(latent class analysis,LCA)是以个            关节炎、哮喘、高脂血症、慢性肾脏病、慢性乙型肝炎、
           体为中心对患者进行分类的研究方法,根据潜在类别模                            慢性胃炎等〕;(2)服药时间 >3 个月;(3)服用的
           型(latent class model,LCM)及个体外显行为特征判断                药物由患者自行保管;(4)意识清楚,能与研究人员
           个体的潜在特征分类及各个类别的占比,从个体化角度                            有效地沟通;(5)对本研究知情同意,并自愿参与本
           对类别间的差异进行最大化区分              [11] ,更能揭示群体内           研究。排除标准:既往有痴呆或精神疾病史者。
           不同异质个体之间的差异           [12] 。BLALOCK 等 [13] 通过对          本研究拟采用多元 Logistic 回归分析慢性病共病患
           109 例不坚持服药的高脂血症患者进行 LCA,发现其服                        者服药依从性类别的影响因素。基于文献回顾,初步
   63   64   65   66   67   68   69   70   71   72   73