Chinese General Practice ›› 2022, Vol. 25 ›› Issue (03): 380-386.DOI: 10.12114/j.issn.1007-9572.2021.00.569
Special Issue: 神经退行性病变最新文章合辑; 阿尔茨海默病最新文章合辑; 神经系统疾病最新文章合辑; 脑健康最新研究合辑
• Cutting Edge • Previous Articles
Latest Research on the Neuroprotective Mechanism of Short-chain Fatty Acids in Stroke and Its Relation with Post-stroke Cognitive Impairment
1.School of Rehabilitation Medicine,Henan University of Chinese Medicine,Zhengzhou 450000,China
2.Rehabilitation Department,the First Affiliated Hospital of Henan University of TCM,Zhengzhou 450000,China
*Corresponding author:FENG Xiaodong,Professor,Doctoral supervisor;E-mail:fxd0502@163.com
Received:
2021-03-01
Revised:
2021-06-22
Published:
2022-01-20
Online:
2021-12-29
通讯作者:
冯晓东
基金资助:
CLC Number:
LIU Huanhuan, LI Ruiqing, SU Kaiqi, YUAN Jie, LI Qi, FENG Xiaodong.
Latest Research on the Neuroprotective Mechanism of Short-chain Fatty Acids in Stroke and Its Relation with Post-stroke Cognitive Impairment [J]. Chinese General Practice, 2022, 25(03): 380-386.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chinagp.net/EN/10.12114/j.issn.1007-9572.2021.00.569
[1] | SILVA Y P, BERNARDI A, FROZZA R L. The role of short-chain fatty acids from gut microbiota in gut-brain communication[J]. Front Endocrinol(Lausanne),2020,11:25. DOI:10.3389/fendo.2020.00025. |
[2] | TAN J, MCKENZIE C, POTAMITIS M,et al. The role of short-chain fatty acids in health and disease[J]. Adv Immunol,2014,121:91-119. DOI:10.1016/B978-0-12-800100-4.00003-9. |
[3] | 胡民万,扈金萍. 短链脂肪酸与代谢性疾病相关性的研究进展[J]. 国际药学研究杂志,2020,47(11):881-886,953. DOI:10.13220/j.cnki.jipr.2020.11.001. |
[4] | YISSACHAR N, ZHOU Y, UNG L,et al. An intestinal organ culture system uncovers a role for the nervous system in microbe-immune crosstalk[J]. Cell,2017,168(6):1135-1148. e12. DOI:10.1016/j.cell.2017.02.009. |
[5] | ZENG C, TAN H. Gut microbiota and heart,vascular injury[J]. Adv Exp Med Biol,2020,1238:107-141. DOI:10.1007/978-981-15-2385-4_8. |
[6] | MOHAJERI M H, BRUMMER R J M, RASTALL R A,et al. The role of the microbiome for human health:from basic science to clinical applications[J]. Eur J Nutr,2018,57():1-14. DOI:10.1007/s00394-018-1703-4. |
[7] | BOLOGNINI D, TOBIN A B, MILLIGAN G,et al. The pharmacology and function of receptors for short-chain fatty acids[J]. Mol Pharmacol,2016,89(3):388-398. DOI:10.1124/mol.115.102301. |
[8] | LEE Y, MORRISON B M, LI Y,et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration[J]. Nature,2012,487(7408):443-448. DOI:10.1038/nature11314. |
[9] | RATAJCZAK W, RYL A, MIZERSKI A,et al. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids(SCFAs)[J]. Acta Biochim Pol,2019,66(1):1-12. DOI:10.18388/abp.2018_2648. |
[10] | NØHR M K, EGEROD K L, CHRISTIANSEN S H,et al. Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia[J]. Neuroscience,2015,290:126-137. DOI:10.1016/j.neuroscience.2015.01.040. |
[11] | STILLING R M, VAN DE WOUW M, CLARKE G,et al. The neuropharmacology of butyrate:the bread and butter of the microbiota-gut-brain axis?[J]. Neurochem Int,2016,99:110-132. DOI:10.1016/j.neuint.2016.06.011. |
[12] | WILTON D K, DISSING-OLESEN L, STEVENS B. Neuron-glia signaling in synapse elimination[J]. Annu Rev Neurosci,2019,42:107-127. DOI:10.1146/annurev-neuro-070918-050306. |
[13] | LAGO-BALDAIA I, FERNANDES V M, ACKERMAN S D. More than mortar:glia as architects of nervous system development and disease[J]. Front Cell Dev Biol,2020,8:611269. DOI:10.3389/fcell.2020.611269. |
[14] | ERNY D, HRABE DE ANGELIS A L, JAITIN D,et al. Host microbiota constantly control maturation and function of microglia in the CNS[J]. Nat Neurosci,2015,18(7):965-977. DOI:10.1038/nn.4030. |
[15] | ANWAR S, RIVEST S. Alzheimer's disease:microglia targets and their modulation to promote amyloid phagocytosis and mitigate neuroinflammation[J]. Expert Opin Ther Targets,2020,24(4):331-344. DOI:10.1080/14728222.2020.1738391. |
[16] | KANAZAWA M, NINOMIYA I, HATAKEYAMA M,et al. Microglia and monocytes/macrophages polarization reveal novel therapeutic mechanism against stroke[J]. Int J Mol Sci,2017,18(10):2135. DOI:10.3390/ijms18102135. |
[17] | IADECOLA C, BUCKWALTER M S, ANRATHER J. Immune responses to stroke:mechanisms,modulation,and therapeutic potential[J]. J Clin Invest,2020,130(6):2777-2788. DOI:10.1172/JCI135530. |
[18] | KULESH A, DROBAKHA V, KUKLINA E,et al. Cytokine response,tract-specific fractional anisotropy,and brain morphometry in post-stroke cognitive impairment[J]. J Stroke Cerebrovasc Dis,2018,27(7):1752-1759. DOI:10.1016/j.jstrokecerebrovasdis.2018.02.004. |
[19] | GE R, TORNERO D, HIROTA M,et al. Choroid plexus-cerebrospinal fluid route for monocyte-derived macrophages after stroke[J]. J Neuroinflammation,2017,14(1):153. DOI:10.1186/s12974-017-0909-3. |
[20] | YAMAWAKI Y, YOSHIOKA N, NOZAKI K,et al. Sodium butyrate abolishes lipopolysaccharide-induced depression-like behaviors and hippocampal microglial activation in mice[J]. Brain Res,2018,1680:13-38. DOI:10.1016/j.brainres.2017.12.004. |
[21] | WENZEL T J, GATES E J, RANGER A L,et al. Short-chain fatty acids(SCFAs)alone or in combination regulate select immune functions of microglia-like cells[J]. Mol Cell Neurosci,2020,105:103493. DOI:10.1016/j.mcn.2020.103493. |
[22] | JAWORSKA J, ZALEWSKA T, SYPECKA J,et al. Effect of the HDAC inhibitor,sodium butyrate,on neurogenesis in a rat model of neonatal hypoxia-ischemia:potential mechanism of action[J]. Mol Neurobiol,2019,56(9):6341-6370. DOI:10.1007/s12035-019-1518-1. |
[23] | LEE J, D'AIGLE J, ATADJA L,et al. Gut microbiota-derived short-chain fatty acids promote poststroke recovery in aged mice[J]. Circ Res,2020,127(4):453-465. DOI:10.1161/CIRCRESAHA.119.316448. |
[24] | ANWAR S, PONS V, RIVEST S. Microglia purinoceptor P2Y6:an emerging therapeutic target in CNS diseases[J]. Cells,2020,9(7):1595. DOI:10.3390/cells9071595. |
[25] | LIU S. Neurotrophic factors in enteric physiology and pathophysiology[J]. Neurogastroenterol Motil,2018,30(10):e13446. DOI:10.1111/nmo.13446. |
[26] | SKAPER S D. Neurotrophic factors:an overview[J]. Methods Mol Biol,2018,1727:1-17. DOI:10.1007/978-1-4939-7571-6_1. |
[27] | YANG L L, MILLISCHER V, RODIN S,et al. Enteric short-chain fatty acids promote proliferation of human neural progenitor cells[J]. J Neurochem,2020,154(6):635-646. DOI:10.1111/jnc.14928. |
[28] | VARELA R B, VALVASSORI S S, LOPES-BORGES J,et al. Sodium butyrate and mood stabilizers block ouabain-induced hyperlocomotion and increase BDNF,NGF and GDNF levels in brain of Wistar rats[J]. J Psychiatr Res,2015,61:114-121. DOI:10.1016/j.jpsychires.2014.11.003. |
[29] | ABDULLAHI W, TRIPATHI D, RONALDSON P T. Blood-brain barrier dysfunction in ischemic stroke:targeting tight junctions and transporters for vascular protection[J]. Am J Physiol Cell Physiol,2018,315(3):C343-356. DOI:10.1152/ajpcell.00095. |
[30] | JIANG X, ANDJELKOVIC A V, ZHU L,et al. Blood-brain barrier dysfunction and recovery after ischemic stroke[J]. Prog Neurobiol,2018,163/164:144-171. DOI:10.1016/j.pneurobio.2017.10.001. |
[31] | WELCOME M O. Gut microbiota disorder,gut epithelial and blood-brain barrier dysfunctions in etiopathogenesis of dementia:molecular mechanisms and signaling pathways[J]. Neuromolecular Med,2019,21(3):205-226. DOI:10.1007/s12017-019-08547-5. |
[32] | BRANISTE V, AL-ASMAKH M, KOWAL C,et al. The gut microbiota influences blood-brain barrier permeability in mice[J]. Sci Transl Med,2014,6(263):263ra158. DOI:10.1126/scitranslmed.3009759. |
[33] | GARCIA-GUTIERREZ E, NARBAD A, RODRíGUEZ J M. Autism spectrum disorder associated with gut microbiota at immune,metabolomic,and neuroactive level[J]. Front Neurosci,2020,14:578666. DOI:10.3389/fnins.2020.578666. |
[34] | PARKER A, FONSECA S, CARDING S R. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health[J]. Gut Microbes,2020,11(2):135-157. |
[35] | HOYLES L, SNELLING T, UMLAI U K,et al. Microbiome-host systems interactions:protective effects of propionate upon the blood-brain barrier[J]. Microbiome,2018,6(1):55. DOI:10.1186/s40168-018-0439-y. |
[36] | NIAN K, HARDING I C, HERMAN I M,et al. Blood-brain barrier damage in ischemic stroke and its regulation by endothelial mechanotransduction[J]. Front Physiol,2020,11:605398. DOI:10.3389/fphys.2020.605398. |
[37] | CHEN R, XU Y, WU P,et al. Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota[J]. Pharmacol Res,2019,148:104403. DOI:10.1016/j.phrs.2019.104403. |
[38] | CHEN J, LIU Q, ZENG L,et al. Protein acetylation/deacetylation:a potential strategy for fungal infection control[J]. Front Microbiol,2020,11:574736. DOI:10.3389/fmicb.2020.574736. |
[39] | NARITA T, WEINERT B T, CHOUDHARY C. Functions and mechanisms of non-histone protein acetylation[J]. Nat Rev Mol Cell Biol,2019,20(3):156-174. DOI:10.1038/s41580-018-0081-3. |
[40] | BUFFINGTON S A, HUANG W, COSTA-MATTIOLI M. Translational control in synaptic plasticity and cognitive dysfunction[J]. Annu Rev Neurosci,2014,37:17-38. DOI:10.1146/annurev-neuro-071013-014100. |
[41] | YOO D Y, KIM W, NAM S M,et al. Synergistic effects of sodium butyrate,a histone deacetylase inhibitor,on increase of neurogenesis induced by pyridoxine and increase of neural proliferation in the mouse dentate gyrus[J]. Neurochem Res,2011,36(10):1850-1857. DOI:10.1007/s11064-011-0503-5. |
[42] | ZHONG T, QING Q J, YANG Y,et al. Repression of contexual fear memory induced by isoflurane is accompanied by reduction in histone acetylation and rescued by sodium butyrate[J]. Br J Anaesth,2014,113(4):634-643. DOI:10.1093/bja/aeu184. |
[43] | KIM H J, LEEDS PC, HUANG D M. The HDAC inhibitor,sodium butyrate,stimulates neurogenesis in the ischemic brain[J]. J Neurochem,2009,110(4):1226-1240. DOI:10.1111/j.1471-4159.2009.06212.x. |
[44] | YANG Q Q, ZHOU J W. Neuroinflammation in the central nervous system:symphony of glial cells[J]. Glia,2019,67(6):1017-1035. DOI:10.1002/glia.23571. |
[45] | JAYARAJ R L, AZIMULLAH S, BEIRAM R,et al. Neuroinflammation:friend and foe for ischemic stroke[J]. J Neuroinflammation,2019,16(1):142. DOI:10.1186/s12974-019-1516-2. |
[46] | SEO D Y, HEO J W, KO J R,et al. Exercise and neuroinflammation in health and disease[J]. Int Neurourol J,2019,23():S82-92. DOI:10.5213/inj.1938214.107. |
[47] | PRINZ M, JUNG S, PRILLER J. Microglia biology:one century of evolving concepts[J]. Cell,2019,179(2):292-311. DOI:10.1016/j.cell.2019.08.053. |
[48] | LUU M, PAUTZ S, KOHL V,et al. The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes[J]. Nat Commun,2019,10(1):760. DOI:10.1038/s41467-019-08711-2. |
[49] | íÑIGUEZ-GUTIéRREZ L, GODíNEZ-MéNDEZ L A, FAFUTIS-MORRIS M,et al. Physiological concentrations of short-chain fatty acids induce the formation of neutrophil extracellular traps in vitro[J]. Int J Immunopathol Pharmacol,2020,34:2058738420958949. DOI:10.1177/2058738420958949. |
[50] | KOBAYASHI M, MIKAMI D, KIMURA H,et al. Short-chain fatty acids,GPR41 and GPR43 ligands,inhibit TNF-α-induced MCP-1 expression by modulating p38 and JNK signaling pathways in human renal cortical epithelial cells[J]. Biochem Biophys Res Commun,2017,486(2):499-505. DOI:10.1016/j.bbrc.2017.03.071. |
[51] | SMITH M D, BHATT D P, GEIGER J D,et al. Acetate supplementation modulates brain adenosine metabolizing enzymes and adenosine A2A receptor levels in rats subjected to neuroinflammation[J]. J Neuroinflammation,2014,11:99. DOI:10.1186/1742-2094-11-99. |
[52] | LIU J, LI H, GONG T,et al. Anti-neuroinflammatory effect of short-chain fatty acid acetate against Alzheimer's disease via upregulating GPR41 and inhibiting ERK/JNK/NF-κB[J]. J Agric Food Chem,2020,68(7):7152-7161. DOI:10.1021/acs.jafc.0c02807. |
[53] | CHEN T, NOTO D, HOSHINO Y,et al. Butyrate suppresses demyelination and enhances remyelination[J]. J Neuroinflammation,2019,16(1):165. DOI;10.1186/s12974-019-1552-y. |
[54] | KOSZEWICZ M, JAROCH J, BRZECKA A,et al. Dysbiosis is one of the risk factor for stroke and cognitive impairment and potential target for treatment[J]. Pharmacol Re,2020,164:105277. DOI:10.1016/j.phrs.2020.105277. |
[55] | LIU Y, KONG C, GONG L,et al. The association of post-stroke cognitive impairment and gut microbiota and its corresponding metabolites[J]. J Alzheimers Dis,2020,73(4):1455-1466. DOI:10.3233/JAD-191066. |
[56] | ZHOU Z, XU N, MATEI N,et al. Sodium butyrate attenuated neuronal apoptosis via GPR41/Gβγ/PI3K/Akt pathway after MCAO in rats[J]. J Cereb Blood Flow Metab,2021,41(2):267-281. DOI:10.1177/0271678X20910533. |
[57] | YANG W, YU T, HUANG X,et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity[J]. Nat Commun,2020,11(1):4457. DOI:10.1038/s41467-020-18262-6. |
[58] | SADLER R, CRAMER J V, HEINDL S,et al. Short-chain fatty acids improve poststroke recovery via immunological mechanisms[J]. J Neurosci,2020,40(5):1162-1173. DOI:10.1523/JNEUROSCI.1359-19.2019. |
[59] | CSERéP C, PóSFAI B, LéNáRT N,et al. Microglia monitor and protect neuronal function through specialized somatic purinergic junctions[J]. Science,2020,367(6477):528-537. DOI:10.1126/science.aax6752. |
[60] | LI J M, YU R, ZHANG L P,et al. Dietary fructose-induced gut dysbiosis promotes mouse hippocampal neuroinflammation:a benefit of short-chain fatty acids[J]. Microbiome,2019,7(1):98. DOI:10.1186/s40168-019-0713-7. |
[1] | YANG Ji, ZHANG Yao, ZHAO Yingqiang, ZHANG Qiuyue. Evaluation of the Effectiveness of TCM Three-level Prevention and Control Model in the Management of Patients with Coronary Heart Disease and Stroke: a Single-center, Prospective Cohort Study [J]. Chinese General Practice, 2025, 28(22): 2750-2761. |
[2] | ZHAO Xiaoqing, GUO Tongtong, ZHANG Xinyi, LI Linhong, ZHANG Ya, JI Lihong, DONG Zhiwei, GAO Qianqian, CAI Weiqing, ZHENG Wengui, JING Qi. Construction and Validation of a Risk Prediction Model for Cognitive Impairment in Community-dwelling Older Adults [J]. Chinese General Practice, 2025, 28(22): 2776-2783. |
[3] | SHI Jiarui, WANG Zili, ZHANG Xueqing, SONG Yulei, XU Guihua, BAI Yamei. The Current Status of Initial Cognitive Screening Services in Community-based Cognitive Services Centers in Nanjing [J]. Chinese General Practice, 2025, 28(22): 2784-2790. |
[4] | TAN Yi, ZHU Lihong, YIN Zengwei, HOU Shunan, YU Houming. A Real-world Study of MRI-guided Intravenous Thrombolytic Therapy in Acute Ischemic Stroke [J]. Chinese General Practice, 2025, 28(20): 2508-2515. |
[5] | CHU Tianyu, GU Yan. Carotid Artery Calcification Features in Plaque Stability and Clinical Events [J]. Chinese General Practice, 2025, 28(18): 2247-2252. |
[6] | TAN Wenbin, LI Jia, LIU Mingyu, LU Yongxin, CHENG Yaxin. Research Progress on the Influence of Nervous System Diseases and Related Therapeutic Drugs on Osteoporosis [J]. Chinese General Practice, 2025, 28(17): 2092-2100. |
[7] | LI Mei, JIANG Dongsheng, ZHAO Jingjing, CAO Yajing, ZHANG Fan, TANG Lijuan, LIU Xiaoli. Correlation Analysis of Homocysteine and Stroke in People over 40 Years Old [J]. Chinese General Practice, 2025, 28(14): 1723-1729. |
[8] | ZHAO Zhixin, MEI Yongxia, WANG Xiaoxuan, JIANG Hu, WANG Wenna, ZHANG Zhenxiang. Cognition and Experience of Social Participation in Stroke Survivors: a Meta-synthesis Based on Qualitative Studies [J]. Chinese General Practice, 2025, 28(10): 1273-1280. |
[9] | ZHAO Xinrui, HUANG Li, CAO Lichun, QU Huichao, ZHANG Meilin, LIU Huan. Status and Influencing Factors of Reversible and Potentially Reversible Cognitive Frailty among the Community-dwelling Elderly [J]. Chinese General Practice, 2025, 28(07): 824-830. |
[10] | ZHANG Tianyang, XU Wenxiu, QIN Xinyu, XING Xuexue, BI Meirong. Research Progress on the Mechanism of Ferroptosis in Neonatal Hypoxic-ischemic Brain Damage [J]. Chinese General Practice, 2025, 28(06): 666-672. |
[11] | YUAN Yiqing, CHEN Honglin. Research Progress on Stigma of Cognitive Disorders [J]. Chinese General Practice, 2025, 28(05): 631-638. |
[12] | LIU Zuting, XU Minghuan, YANG Xuezhi, MO Jiali, LIU Xingyu, DU Huijie, ZHANG Huiqin, YI Yingping, KUANG Jie. Correlation between the Systemic Inflammatory Response Index and Risk of Ischemic Stroke Recurrence [J]. Chinese General Practice, 2025, 28(05): 541-547. |
[13] | ZHOU Chenxi, LIN Beilei, TANG Shangfeng, ZHANG Zhenxiang, WANG Xiaoxuan, JIANG Hu, ZHANG Dudu, LIU Bowen, LI Xin. Construction of Conceptual Framework of Proactive Health Behavior in Stroke Patients [J]. Chinese General Practice, 2025, 28(05): 534-540. |
[14] | DU Huijie, LIU Xingyu, XU Minghuan, YANG Xuezhi, ZHANG Huiqin, MO Jiali, LU Yi, KUANG Jie. Advances in the Prognostic Prediction of Acute Ischemic Stroke: Using Machine Learning Predictive Models as an Example [J]. Chinese General Practice, 2025, 28(05): 554-560. |
[15] | ZHANG Pingshu, XUE Jing, XING Aijun, WANG Lianhui, MA Qian, FU Yongshan, YUAN Xiaodong. Study on Sleep Status and Prognostic Factors in Patients with Acute Posterior Circulation Ischemic Stroke [J]. Chinese General Practice, 2025, 28(05): 548-553. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||