Construction of a Multi-layer Artificial Neural Network Classification Model for Predicting Subclinical Atherosclerosis in Type 2 Diabetic Patients
Department of Endocrinology,the Third Affiliated Hospital of Anhui Medical University,the First People's Hospital of Hefei,Hefei 230000,China
*Corresponding author:LIU Shangquan,Associate professor;E-mail:52100325@qq.com
WANG Qi,LIU Shangquan. Construction of a Multi-layer Artificial Neural Network Classification Model for Predicting Subclinical Atherosclerosis in Type 2 Diabetic Patients [J]. Chinese General Practice, 2021, 24(36): 4612-4617.
CHO N H, SHAW J E, KARURANGA S,et al. IDF Diabetes Atlas:global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Res Clin Pract,2018,138:271-281. DOI:10.1016/j.diabres.2018.02.023.
[2]
WU Y, HE J, SUN X,et al. Carotid atherosclerosis and its relationship to coronary heart disease and stroke risk in patients with type 2 diabetes mellitus[J]. Medicine(Baltimore),2017,96(39):e8151. DOI:10.1097/MD.0000000000008151.
MCCLOSKEY K, VUILLERMIN P, PONSONBY A,et al. Aortic intima-media thickness measured by trans-abdominal ultrasound as an early life marker of subclinical atherosclerosis[J]. Acta Paediatr,2014,103(2):124-130. DOI:10.1111/apa.12457.
[5]
CHAMBLESS LE, FOLSOMET A R, DAVIS V,et al. Risk factors for progression of common carotid atherosclerosis:the Atherosclerosis Risk in Communities Study,1987—1998[J]. Am J Epidemiol,2002,155(1):38-47. DOI:10.1093/aje/155.1.38.
[6]
MESCHIA J F, BUSHNELL C, BODEN-ALBALA B,et al. Guidelines for the primary prevention of stroke:a statement for healthcare professionals from the American Heart Association/American Stroke Association[J]. Stroke,2014,45(12):3754-3832. DOI:10.1161/STR.0000000000000046.
LECUN Y, BENGIO Y, HINTON G,et al. Deep learning[J]. Nature,2015,521(7553):436-444. DOI:10.1038/nature14539.
[12]
AGARAP A F. Deep learning using rectified linear units(ReLU)[J/OL]. (2019-02-07)[2021-02-02]. (2019-02-07)[2021-02-02]. .
[13]
IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[J/OL]. (2015-03-02)[2021-02-02]. (2015-03-02)[2021-02-02]. .
[14]
HE K, ZHANG X, REN S,et al. Deep residual learning for image recognition[J/OL]. (2015-12-10)[2021-02-02]. (2015-12-10)[2021-02-02]. .
[15]
ABID F B, SALLEM M, BRAHAM A,et al. Robust interpretable deep learning for intelligent fault diagnosis of induction motors[J]. IEEE Transactions on Instrumentation and Measurement,2019,69(6):3506-3515. DOI:10.1109/TIM.2019.2932162.