| [1] |
|
| [2] |
YEGHIAZARIANS Y, JNEID H, TIETJENS J R, et al. Obstructive sleep apnea and cardiovascular disease: a scientific statement from the American Heart Association[J]. Circulation, 2021, 144(3): e56-e67. DOI: 10.1161/CIR.0000000000000988.
|
| [3] |
REDLINE S, AZARBARZIN A, PEKER Y. Obstructive sleep apnoea heterogeneity and cardiovascular disease[J]. Nat Rev Cardiol, 2023, 20(8): 560-573. DOI: 10.1038/s41569-023-00846-6.
|
| [4] |
SENARATNA C V, PERRET J L, LODGE C J, et al. Prevalence of obstructive sleep apnea in the general population: a systematic review[J]. Sleep Med Rev, 2017, 34: 70-81. DOI: 10.1016/j.smrv.2016.07.002.
|
| [5] |
|
| [6] |
SÁNCHEZ-DE-LA-TORRE M, CAMPOS-RODRIGUEZ F, BARBÉ F. Obstructive sleep apnoea and cardiovascular disease[J]. Lancet Respir Med, 2013, 1(1): 61-72. DOI: 10.1016/S2213-2600(12)70051-6.
|
| [7] |
TOBORE I, LI J Z, LIU Y H, et al. Deep learning intervention for health care challenges: some biomedical domain considerations[J]. JMIR Mhealth Uhealth, 2019, 7(8): e11966. DOI: 10.2196/11966.
|
| [8] |
CHEN X X, WANG X M, ZHANG K, et al. Recent advances and clinical applications of deep learning in medical image analysis[J]. Med Image Anal, 2022, 79: 102444. DOI: 10.1016/j.media.2022.102444.
|
| [9] |
XIE J L, FONSECA P, VAN DIJK J, et al. A multi-task learning model using RR intervals and respiratory effort to assess sleep disordered breathing[J]. Biomed Eng Online, 2024, 23(1): 45. DOI: 10.1186/s12938-024-01240-0.
|
| [10] |
ALATTAR M, GOVIND A, MAINALI S. Artificial intelligence models for the automation of standard diagnostics in sleep medicine-a systematic review[J]. Bioengineering, 2024, 11(3): 206. DOI: 10.3390/bioengineering11030206.
|
| [11] |
|
| [12] |
胡丙杰. 全科医学基础[M]. 2版. 北京: 科学出版社, 2022.
|
| [13] |
|
| [14] |
CASAL-GUISANDE M, TORRES-DURÁN M, MOSTEIRO-AÑÓN M, et al. Design and conceptual proposal of an intelligent clinical decision support system for the diagnosis of suspicious obstructive sleep apnea patients from health profile[J]. Int J Environ Res Public Health, 2023, 20(4): 3627. DOI: 10.3390/ijerph20043627.
|
| [15] |
LÉVY P, KOHLER M, MCNICHOLAS W T, et al. Obstructive sleep apnoea syndrome[J]. Nat Rev Dis Primers, 2015, 1: 15015. DOI: 10.1038/nrdp.2015.15.
|
| [16] |
ZHANG Y, YU B, QI Q B, et al. Metabolomic profiles of sleep-disordered breathing are associated with hypertension and diabetes mellitus development[J]. Nat Commun, 2024, 15(1): 1845. DOI: 10.1038/s41467-024-46019-y.
|
| [17] |
BUBU O M, ANDRADE A G, UMASABOR-BUBU O Q, et al. Obstructive sleep apnea, cognition and Alzheimer's disease: a systematic review integrating three decades of multidisciplinary research[J]. Sleep Med Rev, 2020, 50: 101250. DOI: 10.1016/j.smrv.2019.101250.
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
CHIU H Y, CHEN P Y, CHUANG L P, et al. Diagnostic accuracy of the Berlin questionnaire, STOP-BANG, STOP, and Epworth sleepiness scale in detecting obstructive sleep apnea: a bivariate meta-analysis[J]. Sleep Med Rev, 2017, 36: 57-70. DOI: 10.1016/j.smrv.2016.10.004.
|
| [22] |
ABU K, KHRAICHE M L, AMATOURY J. Obstructive sleep apnea diagnosis and beyond using portable monitors[J]. Sleep Med, 2024, 113: 260-274. DOI: 10.1016/j.sleep.2023.11.034.
|
| [23] |
中华医学会, 中华医学会杂志社, 中华医学会全科医学分会, 等. 成人阻塞性睡眠呼吸暂停基层诊疗指南(2018年)[J]. 中华全科医师杂志, 2019, 18(1): 21-29.
|
| [24] |
FDA approves first medication for obstructive sleep apnea[EB/OL]. (2024-12-20)[2025-05-12].
|
| [25] |
|
| [26] |
ULRICH SOMMER J, LINDNER L, KENT D T, et al. Evaluation of an OSA risk screening smartphone app in a general, non-symptomatic population sample(ESOSA)[J]. J Clin Med, 2024, 13(16): 4664. DOI: 10.3390/jcm13164664.
|
| [27] |
SUTHERLAND K, LEE R W W, PETOCZ P, et al. Craniofacial phenotyping for prediction of obstructive sleep apnoea in a Chinese population[J]. Respirology, 2016, 21(6): 1118-1125. DOI: 10.1111/resp.12792.
|
| [28] |
CHEN Q, LIANG Z, WANG Q, et al. Self-helped detection of obstructive sleep apnea based on automated facial recognition and machine learning[J]. Sleep Breath, 2023, 27(6): 2379-2388. DOI: 10.1007/s11325-023-02846-9.
|
| [29] |
SUTHERLAND K, LEE R W W, CHAN T O, et al. Craniofacial phenotyping in Chinese and Caucasian patients with sleep apnea: influence of ethnicity and sex[J]. J Clin Sleep Med, 2018, 14(7): 1143-1151. DOI: 10.5664/jcsm.7212.
|
| [30] |
ISURU NIROSHANA S M, ZHU X, NAKAMURA K, et al. A fused-image-based approach to detect obstructive sleep apnea using a single-lead ECG and a 2D convolutional neural network[J]. PLoS One, 2021, 16(4): e0250618. DOI: 10.1371/journal.pone.0250618.
|
| [31] |
PERSLEV M, DARKNER S, KEMPFNER L, et al. U-Sleep: resilient high-frequency sleep staging[J]. NPJ Digit Med, 2021, 4(1): 72. DOI: 10.1038/s41746-021-00440-5.
|
| [32] |
CHOO B P, MOK Y, OH H C, et al. Benchmarking performance of an automatic polysomnography scoring system in a population with suspected sleep disorders[J]. Front Neurol, 2023, 14: 1123935. DOI: 10.3389/fneur.2023.1123935.
|
| [33] |
SANCHEZ GOMEZ J, PRAMONO R X A, IMTIAZ S A, et al. Validation of a wearable medical device for automatic diagnosis of OSA against standard PSG[J]. J Clin Med, 2024, 13(2): 571. DOI: 10.3390/jcm13020571.
|
| [34] |
EGUCHI K, YABUUCHI T, NAMBU M, et al. Investigation on factors related to poor CPAP adherence using machine learning: a pilot study[J]. Sci Rep, 2022, 12(1): 19563. DOI: 10.1038/s41598-022-21932-8.
|
| [35] |
SCIOSCIA G, TONDO P, FOSCHINO BARBARO M P, et al. Machine learning-based prediction of adherence to continuous positive airway pressure(CPAP) in obstructive sleep apnea(OSA)[J]. Inform Health Soc Care, 2022, 47(3): 274-282. DOI: 10.1080/17538157.2021.1990300.
|
| [36] |
TURINO C, BENÍTEZ I D, RAFAEL-PALOU X, et al. Management and treatment of patients with obstructive sleep apnea using an intelligent monitoring system based on machine learning aiming to improve continuous positive airway pressure treatment compliance: randomized controlled trial[J]. J Med Internet Res, 2021, 23(10): e24072. DOI: 10.2196/24072.
|
| [37] |
KIM H Y, JO J H, CHUNG J W, et al. The multisystemic effects of oral appliance therapy for obstructive sleep apnea: a narrative review[J]. Medicine, 2022, 101(29): e29400. DOI: 10.1097/MD.0000000000029400.
|
| [38] |
DUTTA R, TONG B K, ECKERT D J. Development of a physiological-based model that uses standard polysomnography and clinical data to predict oral appliance treatment outcomes in obstructive sleep apnea[J]. J Clin Sleep Med, 2022, 18(3): 861-870. DOI: 10.5664/jcsm.9742.
|
| [39] |
VENA D, AZARBARZIN A, MARQUES M, et al. Predicting sleep apnea responses to oral appliance therapy using polysomnographic airflow[J]. Sleep, 2020, 43(7): zsaa004. DOI: 10.1093/sleep/zsaa004.
|
| [40] |
CHOI J H, LEE J Y, CHA J, et al. Predictive models of objective oropharyngeal OSA surgery outcomes: Success rate and AHI reduction ratio[J]. PLoS One, 2017, 12(9): e0185201. DOI: 10.1371/journal.pone.0185201.
|
| [41] |
YANG S J, KIM J S, CHUNG S K, et al. Machine learning-based model for prediction of outcomes in palatal surgery for obstructive sleep apnoea[J]. Clin Otolaryngol, 2021, 46(6): 1242-1246. DOI: 10.1111/coa.13823.
|
| [42] |
KIM J Y, KONG H J, KIM S H, et al. Machine learning-based preoperative datamining can predict the therapeutic outcome of sleep surgery in OSA subjects[J]. Sci Rep, 2021, 11(1): 14911. DOI: 10.1038/s41598-021-94454-4.
|
| [43] |
|
| [44] |
GAVIRIA-VALENCIA S, MURPHY S P, KAGGAL V C, et al. Near real-time natural language processing for the extraction of abdominal aortic aneurysm diagnoses from radiology reports: algorithm development and validation study[J]. JMIR Med Inform, 2023, 11: e40964. DOI: 10.2196/40964.
|
| [45] |
ALI A, AL-RIMY B A S, TIN T T, et al. Empowering precision medicine: unlocking revolutionary insights through blockchain-enabled federated learning and electronic medical records[J]. Sensors, 2023, 23(17): 7476. DOI: 10.3390/s23177476.
|
| [46] |
DAI R R, YANG K, ZHUANG J J, et al. Enhanced machine learning approaches for OSA patient screening: model development and validation study[J]. Sci Rep, 2024, 14: 19756. DOI: 10.1038/s41598-024-70647-5.
|
| [47] |
SHAO S L, HAN G J, WANG T, et al. Obstructive sleep apnea detection scheme based on manually generated features and parallel heterogeneous deep learning model under IoMT[J]. IEEE J Biomed Health Inform, 2022, 26(12): 5841-5850. DOI: 10.1109/JBHI.2022.3166859.
|
| [48] |
DEVIAENE M, TESTELMANS D, BUYSE B, et al. Automatic screening of sleep apnea patients based on the SpO 2 signal[J]. IEEE J Biomed Health Inform, 2019, 23(2): 607-617. DOI: 10.1109/JBHI.2018.2817368.
|
| [49] |
PÉPIN J L, BAILLIEUL S, BAILLY S, et al. New management pathways for follow-up of CPAP-treated sleep apnoea patients including digital medicine and multimodal telemonitoring[J]. Thorax, 2024, 80(1): 52-61. DOI: 10.1136/thorax-2024-221422.
|
| [50] |
KOROMPILI G, AMFILOCHIOU A, KOKKALAS L, et al. PSG-Audio, a scored polysomnography dataset with simultaneous audio recordings for sleep apnea studies[J]. Sci Data, 2021, 8(1): 197. DOI: 10.1038/s41597-021-00977-w.
|
| [51] |
WANG B C, YI X Y, GAO J D, et al. Real-time prediction of upcoming respiratory events via machine learning using snoring sound signal[J]. J Clin Sleep Med, 2021, 17(9): 1777-1784. DOI: 10.5664/jcsm.9292.
|
| [52] |
DE CHAZAL P, SUTHERLAND K, CISTULLI P A. Advanced polysomnographic analysis for OSA: a pathway to personalized management?[J]. Respirology, 2020, 25(3): 251-258. DOI: 10.1111/resp.13564.
|
| [53] |
BANERJEE A, MAJI D, DATTA R, et al. SHUBHCHINTAK: an efficient remote health monitoring approach for elderly people[J]. Multimed Tools Appl, 2022, 81(26): 37137-37163. DOI: 10.1007/s11042-022-13539-y.
|
| [54] |
ALOWAIS S A, ALGHAMDI S S, ALSUHEBANY N, et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice[J]. BMC Med Educ, 2023, 23(1): 689. DOI: 10.1186/s12909-023-04698-z.
|
| [55] |
NOH E, WON J, JO S, et al. Conversational agents for body weight management: systematic review[J]. J Med Internet Res, 2023, 25: e42238. DOI: 10.2196/42238.
|
| [56] |
COLLIN H, KEOGH K, BASTO M, et al. ChatGPT can help guide and empower patients after prostate cancer diagnosis[J]. Prostate Cancer Prostatic Dis, 2025, 28(2): 513-515. DOI: 10.1038/s41391-024-00864-6.
|
| [57] |
MCMAHON A K, TERRY R S, ITO W E, et al. Battle of the bots: a comparative analysis of ChatGPT and Bing AI for kidney stone-related questions[J]. World J Urol, 2024, 42(1): 600. DOI: 10.1007/s00345-024-05326-1.
|
| [58] |
MCNICHOLAS W T, KORKALAINEN H. Translation of obstructive sleep apnea pathophysiology and phenotypes to personalized treatment: a narrative review[J]. Front Neurol, 2023, 14: 1239016. DOI: 10.3389/fneur.2023.1239016.
|
| [59] |
GARBARINO S, BRAGAZZI N L. Revolutionizing sleep health: the emergence and impact of personalized sleep medicine[J]. J Pers Med, 2024, 14(6): 598. DOI: 10.3390/jpm14060598.
|
| [60] |
JOHNSON D, DEL FIOL G, KAWAMOTO K, et al. Genetically guided precision medicine clinical decision support tools: a systematic review[J]. J Am Med Inform Assoc, 2024, 31(5): 1183-1194. DOI: 10.1093/jamia/ocae033.
|
| [61] |
FENG Q J, HARTE M, CAREY B, et al. The risks of artificial intelligence: a narrative review and ethical reflection from an oral medicine group[J]. Oral Dis, 2025, 31(2): 348-353. DOI: 10.1111/odi.15100.
|
| [62] |
ESMAEILZADEH P, MIRZAEI T, DHARANIKOTA S. Patients' perceptions toward human-artificial intelligence interaction in health care: experimental study[J]. J Med Internet Res, 2021, 23(11): e25856. DOI: 10.2196/25856.
|
| [63] |
MALKIN R, VON OLDENBURG BEER K. Diffusion of novel healthcare technologies to resource poor settings[J]. Ann Biomed Eng, 2013, 41(9): 1841-1850. DOI: 10.1007/s10439-013-0750-5.
|
| [64] |
GAULD C, BAILLIEUL S, MARTIN V P, et al. Symptom content analysis of OSA questionnaires: time to identify and improve relevance of diversity of OSA symptoms?[J]. J Clin Sleep Med, 2024, 20(7): 1105-1117. DOI: 10.5664/jcsm.11086.
|
| [65] |
JENNINGS M R, TURNER C, BOND R R, et al. Code-free cloud computing service to facilitate rapid biomedical digital signal processing and algorithm development[J]. Comput Meth Programs Biomed, 2021, 211: 106398. DOI: 10.1016/j.cmpb.2021.106398.
|
| [66] |
ZHOU Y, LI Z, LI Y X. Interdisciplinary collaboration between nursing and engineering in health care: a scoping review[J]. Int J Nurs Stud, 2021, 117: 103900. DOI: 10.1016/j.ijnurstu.2021.103900.
|
| [67] |
ZHUANG L, JUMANI A K, SBEIH A. Internet of Things-assisted intelligent monitoring model to analyse the physical health condition[J]. Technol Health Care, 2021, 29(6): 1277-1290. DOI: 10.3233/THC-213006.
|