中国全科医学 ›› 2025, Vol. 28 ›› Issue (19): 2338-2344.DOI: 10.12114/j.issn.1007-9572.2023.0897

• 热点研究 • 上一篇    

图像类医疗大数据隐私加密技术方案及政策立法的协同策略研究

陈开元1,2, 陈龙3, 张怡1,2, 柴润祺3, 王娜2, 曾华堂1,2,4, 柴森春3,*(), 梁万年1,2,*()   

  1. 1.100084 北京市,清华大学万科公共卫生与健康学院
    2.100084 北京市,清华大学健康中国研究院
    3.100081 北京市,北京理工大学自动化学院
    4.518028 广东省,深圳市卫生健康发展研究和数据管理中心
  • 收稿日期:2024-11-08 修回日期:2025-01-04 出版日期:2025-07-05 发布日期:2025-05-28
  • 通讯作者: 柴森春, 梁万年
  • 陈开元与陈龙为共同第一作者


    作者贡献:

    陈开元负责研究选题与设计,论文撰写;陈龙负责算法设计、数据处理、计算机代码实现;张怡、柴润祺负责论文修订;王娜、曾华堂负责提供研究数据,参与理论研究;柴森春、梁万年负责选题指导、审阅与修订论文,对文章整体负责。

  • 基金资助:
    科技创新2030—"新一代人工智能"重大项目(2021ZD0114100); 深圳市"医疗卫生三名工程"项目(SZSM202111001)

Research on the Privacy-preserving Technical Scheme and the Coordinative Policies Strategies for Big Data in Medical Imaging

CHEN Kaiyuan1,2, CHEN Long3, ZHANG Yi1,2, CHAI Runqi3, WANG Na2, ZENG Huatang1,2,4, CHAI Senchun3,*(), LIANG Wannian1,2,*()   

  1. 1. Vanke School of Public Health, Tsinghua University, Beijing 100084, China
    2. Healthy China Research Institute, Tsinghua University, Beijing 100084, China
    3. School of Automation, Beijing Institute of Technology, Beijing 100081, China
    4. Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China
  • Received:2024-11-08 Revised:2025-01-04 Published:2025-07-05 Online:2025-05-28
  • Contact: CHAI Senchun, LIANG Wannian
  • About author:

    CHEN Kaiyuan and CHEN Long are co-first authors

摘要: 背景 针对图像类医疗大数据隐私加密需求,构建一种创新的、基于编码的隐私保护分割技术框架,并从技术与政策立法协同的角度探索促进该技术落地应用的实施路径具有重要意义。 目的 构建适用于图像类医疗大数据的隐私保护技术框架,提出促进技术应用的政策立法协同策略,以期通过技术创新与政策支持共同推动健康信息化服务体系的完善。 方法 通过文献综述、理论分析、技术框架构建、实验验证、政策分析等方法构建创新型图像类医疗大数据隐私保护分割技术框架,提出政策立法协同策略。 结果 成功构建创新型图像类医疗大数据隐私保护分割技术框架并通过有效性验证;针对现行法律法规在云数据处理、责任归属、技术标准及特殊数据保护等方面的不足提出了政策立法建议。 结论 基于编码的创新型图像类医疗大数据隐私保护分割技术框架能够在保障患者隐私的前提下实现图像类医疗数据的有效共享与利用,提高数据安全性和隐私保护水平;相应政策立法协同策略的提出为图像类医疗大数据的安全治理提供了新思路和新方法。

关键词: 医疗成像, 大数据, 数据管理, 健康信息互操作性, 隐私权, 数据加密, 政策制订

Abstract:

Background

Responding to the increasing demand for privacy encryption in image-based medical big data, it is of great importance of proposing an innovative framework of coded-based privacy-preserving segmentation technology, and exploring the implementation pathways to facilitate the practical application of this technology from a collaborative perspective of technology and policy legislation.

Objective

To develop a privacy protection technology framework tailored for image-based medical big data, and propose policy and legislative coordination strategies to advance the technology's adoption, in order to enhance the healthcare informatization service system by combining technological innovation with policy support.

Methods

Construct the innovative framework for privacy preserving segmentation technology in medical image big data by literature review, theoretical analysis, technology framework development, experimental validation, and policy analysis, and then propose the policy and legislative coordination strategies.

Results

We successfully construct the innovative framework for privacy preserving segmentation technology in medical image big data and though the effectiveness verification, and propose specific policy and legislative recommendations addressing the inadequacies of existing laws and regulations in areas such as cloud data processing, liability attribution, technical standards, and special data protection.

Conclusion

Coded-based innovative framework for privacy preserving segmentation technology in medical image big data can enable effective sharing and utilization of image-based medical data by safeguarding patient's privacy, significantly enhance the data security and privacy protection level, and the proposing of corresponding policy and legislative coordination strategies offers novel insights and approaches to secure governance in this domain.

Key words: Medical imaging, Big data, Data management, Health information interoperability, Privacy, Data encryption, Policy making

中图分类号: