[1] |
李蕾. 协同推进科技创新和制度创新[EB/OL]. (2023-12-15)[2024-01-22].
|
[2] |
新华社. 中共中央办公厅 国务院办公厅印发《关于进一步完善医疗卫生服务体系的意见》[EB/OL].(2023-03-23)[2023-11-13].
|
[3] |
LI W Q, MILLETARÌ F, XU D G, et al. Privacy-preserving federated brain tumour segmentation[M]// Machine Learning in Medical Imaging. Cham:Springer International Publishing, 2019:133-141. DOI: 10.1007/978-3-030-32692-0_16.
|
[4] |
LI X X, GU Y F, DVORNEK N, et al. Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation:ABIDE results[J]. Med Image Anal,2020,65:101765.
|
[5] |
WICAKSANA J, YAN Z Q, ZHANG D, et al. FedMix:mixed supervised federated learning for medical image segmentation[J]. IEEE Trans Med Imaging,2023,42(7):1955-1968.
|
[6] |
LI M, LAI L Z, SUDA N, et al. PrivyNet:a flexible framework for privacy-preserving deep neural network training[EB/OL]. (2017-09-18)[2023-11-13].
|
[7] |
ALI OSIA S, TAHERI A, SHAMSABADI A S, et al. Deep private-feature extraction[J]. IEEE Trans Knowl Data Eng, 2020, 32(1):54-66. DOI: 10.1109/TKDE.2018.2878698.
|
[8] |
DING X F, FANG H B, ZHANG Z L, et al. Privacy-preserving feature extraction via adversarial training[J]. IEEE Trans Knowl Data Eng,2022,34(4):1967-1979.
|
[9] |
DOWLIN N, GILAD-BACHRACH R, LAINE K, et al. Cryptonets:applying neural networks to encrypted data with high throughput and accuracy[C]. Proceedings of the 33rd International Conference on Machine Learning,New York,USA,2016.
|
[10] |
HESAMIFARD E, TAKABI H, GHASEMI M. CryptoDL:deep neural networks over encrypted data[EB/OL]. (2017-11-15)[2023-11-13].
|
[11] |
TANAKA M. Learnable image encryption[C]// 2018 IEEE International Conference on Consumer Electronics-Taiwan(ICCE-TW). May 19-21,2018,Taichung,Taiwan,China. IEEE, 2018:1-2. DOI: 10.1109/ICCE-China.2018.8448772.
|
[12] |
SIRICHOTEDUMRONG W, KINOSHITA Y, KIYA H. Pixel-based image encryption without key management for privacy-preserving deep neural networks[J]. IEEE Access,2019,7:177844-177855.
|
[13] |
HUANG Q X, YAP W L, CHIU M Y, et al. Privacy-preserving deep learning with learnable image encryption on medical images[J]. IEEE Access,2022,10:66345-66355.
|
[14] |
CHANG Q, QU H, ZHANG Y K, et al. Synthetic learning:learn from distributed asynchronized discriminator GAN without sharing medical image data[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). June 13-19,2020. Seattle,WA,USA. IEEE,2020:13853-13863.
|
[15] |
KIM B N, DOLZ J, JODOIN P M, et al. Privacy-net:an adversarial approach for identity-obfuscated segmentation of medical images[J]. IEEE Trans Med Imag, 2021, 40(7):1737-1749. DOI: 10.1109/TMI.2021.3065727.
|
[16] |
吕欣,韩晓露. 健全大数据安全保障体系研究[J]. 信息安全研究,2015,1(3):211-216.
|
[17] |
闫倩,马海群. 我国开放数据政策与数据安全政策的协同探究[J]. 图书馆理论与实践,2018(5):1-6.
|
[18] |
刘军平,黄泽雨. 医疗数据安全之困境及其破解路径[J]. 医学与法学,2023,15(5):14-19.
|
[19] |
叶竹盛,刘婉君. 医疗科研中的生物医疗数据"匿名化"问题研究[J]. 医学与法学,2023,15(4):44-53.
|
[20] |
RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[M]//Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015. Cham:Springer International Publishing,2015:234-241.
|
[21] |
ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). July 21-26,2017,Honolulu,HI,USA. IEEE, 2017:6230-6239. DOI: 10.1109/CVPR.2017.660.
|
[22] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). June 27-30,2016,Las Vegas,NV,USA. IEEE,2016:770-778.
|
[23] |
CAMPELLO V M, GKONTRA P, IZQUIERDO C, et al. Multi-centre,multi-vendor and multi-disease cardiac segmentation:the M&Ms challenge[J]. IEEE Trans Med Imaging, 2021, 40(12):3543-3554. DOI: 10.1109/TMI.2021.3090082.
|
[24] |
新华社. 中共中央 国务院关于构建数据基础制度更好发挥数据要素作用的意见[EB/OL].(2022-12-19)[2023-11-14].
|