[1] |
MERVIS J S, PHILLIPS T J. Pressure ulcers:Pathophysiology,epidemiology,risk factors,and presentation[J]. J Am Acad Dermatol, 2019, 81(4):881-890. DOI: 10.1016/j.jaad.2018.12.069.
|
[2] |
HEADLAM J, ILLSLEY A. Pressure ulcers:an overview[J]. Br J Hosp Med:Lond, 2020, 81(12):1-9. DOI: 10.12968/hmed.2020.0074.
|
[3] |
|
[4] |
SAWYER LEE R, DUNNMON J A, HE A, et al. Comparison of segmentation-free and segmentation-dependent computer-aided diagnosis of breast masses on a public mammography dataset[J]. J Biomed Inform, 2021, 113:103656. DOI: 10.1016/j.jbi.2020.103656.
|
[5] |
AGNES S A, ANITHA J, PANDIAN S I A, et al. Classification of mammogram images using multiscale all convolutional neural network(MA-CNN)[J]. J Med Syst, 2019, 44(1):30. DOI: 10.1007/s10916-019-1494-z.
|
[6] |
LI F, CHEN H, LIU Z, et al. Fully automated detection of retinal disorders by image-based deep learning[J]. Graefe's Arch Clin Exp Ophthalmol, 2019, 257(3):495-505. DOI: 10.1007/s00417-018-04224-8.
|
[7] |
TING D S W, PENG L, VARADARAJAN A V, et al. Deep learning in ophthalmology:the technical and clinical considerations[J]. Prog Retin Eye Res, 2019, 72:100759. DOI: 10.1016/j.preteyeres.2019.04.003.
|
[8] |
TERVEN J, CÓRDOVA-ESPARZA D M, ROMERO-GONZÁLEZ J A. A comprehensive review of YOLO architectures in computer vision:from YOLOv1 to YOLOv8 and YOLO-NAS[J]. Mach Learn Knowl Extr, 2023, 5(4):1680-1716. DOI: 10.3390/make5040083.
|
[9] |
LOU H T, DUAN X H, GUO J M, et al. DC-YOLOv8:small-size object detection algorithm based on camera sensor[J]. Electronics, 2023, 12(10):2323. DOI: 10.3390/electronics12102323.
|
[10] |
KOTTNER J, CUDDIGAN J, CARVILLE K, et al. Prevention and treatment of pressure ulcers/injuries:the protocol for the second update of the international clinical practice guideline 2019[J]. J Tissue Viability, 2019, 28(2):51-58. DOI: 10.1016/j.jtv.2019.01.001.
|
[11] |
|
[12] |
ATHALYE C, ARNAOUT R. Domain-guided data augmentation for deep learning on medical imaging[J]. PLoS One, 2023, 18(3):e0282532. DOI: 10.1371/journal.pone.0282532.
|
[13] |
KANG L W, WANG I S, CHOU K L, et al. Image-based real-time fire detection using deep learning with data augmentation for vision-based surveillance applications[C]//2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Taipei,China. IEEE, 2019:1-4. DOI: 10.1109/AVSS.2019.8909899.
|
[14] |
QIU Z R, RONG S Y, YE L K. YOLF-ShipPnet:improved RetinaNet with pyramid vision transformer[J]. Int J Comput Intell Syst, 2023, 16(1):58. DOI: 10.1007/s44196-023-00235-4.
|
[15] |
SHIN H C, ROTH H R, GAO M C, et al. Deep convolutional neural networks for computer-aided detection:CNN architectures,dataset characteristics and transfer learning[J]. IEEE Trans Med Imaging, 2016, 35(5):1285-1298. DOI: 10.1109/TMI.2016.2528162.
|
[16] |
JOCHER G, CHAURASIA A, QIU J. Ultralytics YOLOv8[EB/OL]. [2024-03-20].
|
[17] |
|
[18] |
|
[19] |
|
[20] |
SUN X F, NI P W, WU M J, et al. A clinicoepidemiological profile of chronic wounds in wound healing department in Shanghai[J]. Int J Low Extrem Wounds, 2017, 16(1):36-44. DOI: 10.1177/1534734617696730.
|
[21] |
HAESLER E, PITTMAN J, CUDDIGAN J, et al. An exploration of the perspectives of individuals and their caregivers on pressure ulcer/injury prevention and management to inform the development of a clinical guideline[J]. J Tissue Viability, 2022, 31(1):1-10. DOI: 10.1016/j.jtv.2021.10.008.
|
[22] |
HAAVISTO E, STOLT M, PUUKKA P, et al. Consistent practices in pressure ulcer prevention based on international care guidelines:a cross-sectional study[J]. Int Wound J, 2022, 19(5):1141-1157. DOI: 10.1111/iwj.13710.
|
[23] |
LEBLANC K, WOO K, BASSETT K, et al. Professionals' knowledge,attitudes,and practices related to pressure injuries in Canada[J]. Adv Skin Wound Care, 2019, 32(5):228-233. DOI: 10.1097/01.ASW.0000554444.52120.f6.
|
[24] |
BATES-JENSEN B M, MCCREATH H E, HARPUTLU D, et al. Reliability of the Bates-Jensen wound assessment tool for pressure injury assessment:the pressure ulcer detection study[J]. Wound Repair Regen, 2019, 27(4):386-395. DOI: 10.1111/wrr.12714.
|
[25] |
BOYKO T V, LONGAKER M T, YANG G P. Review of the current management of pressure ulcers[J]. Adv Wound Care, 2018, 7(2):57-67. DOI: 10.1089/wound.2016.0697.
|
[26] |
ŠÍN P, HOKYNKOVÁ A, MARIE N, et al. Machine learning-based pressure ulcer prediction in modular critical care data[J]. Diagnostics, 2022, 12(4):850. DOI: 10.3390/diagnostics12040850.
|
[27] |
LIU H, HU J, ZHOU J Y, et al. Application of deep learning to pressure injury staging[J]. J Wound Care, 2024, 33(5):368-378. DOI: 10.12968/jowc.2024.33.5.368.
|
[28] |
ALDUGHAYFIQ B, ASHFAQ F, JHANJHI N Z, et al. YOLO-based deep learning model for pressure ulcer detection and classification[J]. Healthcare, 2023, 11(9):1222. DOI: 10.3390/healthcare11091222.
|