Chinese General Practice ›› 2026, Vol. 29 ›› Issue (07): 879-884.DOI: 10.12114/j.issn.1007-9572.2025.0037

• Original Research • Previous Articles     Next Articles

Correlation between the Continuous Metabolic Syndrome Score and Glomerular Filtration Rate in Individuals Aged 60 and Above

  

  1. 1. Department of General Medicine, Suzhou Hospital Affiliated to Anhui Medical University/Suzhou Municipal Hospital, Suzhou 234000, China
    2. Anhui Medical University, Hefei 230000, China
  • Received:2025-02-10 Revised:2025-07-15 Published:2026-03-05 Online:2026-02-13
  • Contact: WANG Weiqiang

60岁及以上人群连续代谢综合征评分与肾小球滤过率的关系研究

  

  1. 1.234000 安徽省宿州市,安徽医科大学附属宿州医院 安徽省宿州市立医院全科医学科
    2.230000 安徽省合肥市,安徽医科大学
  • 通讯作者: 王为强
  • 作者简介:

    作者贡献:

    张睿提出主要研究目标,负责研究的构思与设计,研究的实施,撰写论文;张睿、卢鸿润进行数据的收集与整理,统计学处理,图、表的绘制与展示;赵钰、李佳禛进行论文的修订;王为强负责文章的质量控制与审查,对文章整体负责,监督管理。

  • 基金资助:
    安徽省科技创新战略与软科学研究专项计划项目(202106f01050042)

Abstract:

Background

The continuous metabolic syndrome score (cMetS) is a weighted composite score based on five metabolic indicators: waist circumference (WC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), mean arterial pressure (MAP), and fasting plasma glucose (FPG). lthough the role of cMetS in metabolic diseases has been preliminarily recognized, its association with renal function has not yet been systematically elucidated. Given the high prevalence of chronic kidney disease (CKD) and its close link to metabolic dysregulation, elucidating the role of cMetS in this context may pave the way for novel biomarkers or therapeutic targets for early warning, risk stratification, or intervention.

Objective

To investigate the effectiveness of cMetS in early screening for chronic kidney disease (CKD) and to reduce the risk of CKD in the target population by controlling relevant factors.

Methods

From 2017 to 2021, this project screened and collected data from 2 049 elderly individuals (aged≥60 years) with high cardiovascular risks during community-based health examinations across 12 counties/cities in Anhui Province. Participants were stratified by estimated glomerular filtration rate (eGFR): the low-filtration group [eGFR <90 mL·min-1· (1.73 m2)-1] and the normal group [eGFR ≥90 mL·min-1· (1.73 m2)-1]. Multivariate Logistic regression was employed to analyze the correlation between cMetS quartiles and the risk of reduced eGFR.

Results

Patients in the low-filtration group (n=927) showed significantly older age, and higher body weight, body mass index (BMI), waist circumference (WC), systolic blood pressure (SBP), fasting plasma glucose (FPG), serum creatinine (Scr), blood urea nitrogen (BUN), triglycerides (TG), waist-to-height ratio (WHtR), WHtR cut-off=0.5 (WHt.5R), body roundness index (BRI), and cMetS than the normal group (n=1 122) (P<0.05). Stratified by cMetS quartiles, four groups were assigned as follows: S1=-4.40 to <-0.18; S2=-0.18 to <0.30; S3=0.30 to <0.79; S4: 0.79 to 4.96. The body hight (BH), body mass, BMI, WC, SBP, DBP, MAP, FPG, Scr, TC, TG, low-density lipoprotein cholesterol (LDL-C), WHtR, WHt.5R, and BRI in the four groups increased with the increasing cMetS levels, while BUN, HDL-C, and eGFR decreased with the increasing cMetS levels (P<0.05). Compared with the cMetS S1 group, the risk of decreased glomerular filtration rate increased in S2, S3, and S4 groups (OR=1.462, 1.656, and 1.652, respectively, P<0.05). Compared with the BMI M1 group (16.51-<23.19 kg/m2), the risk of decreased glomerular filtration rate in M2 (23.19-<25.31 kg/m2), M3 (25.31-<27.61 kg/m2), and M4 groups (27.61-<40.89 kg/m2)significantly increased (OR=1.373, 1.328, and 1.385, respectively, P<0.05).

Conclusion

Among older adults of 60 years and above, age and BMI increase, and eGFR decreases with the increasing cMetS levels. Elevated cMetS and BMI are independent risk factors for the decreased glomerular filtration rate. Renal function gradually declines with aging, which can be accelerated by MetS. For older adults of 60 years and above, early intervention is needed to delay the deterioration of renal function.

Key words: Metabolic syndrome, Continuous metabolic syndrome score, Glomerular filtration rate, Chronic kidney disease, Anhui

摘要:

背景

连续代谢综合征评分(cMetS)是基于腰围(WC)、三酰甘油(TG)、高密度脂蛋白胆固醇(HDL-C)、平均动脉压(MAP)及空腹血糖(FPG)5项代谢指标进行加权计算而成的评分标准,尽管cMetS在代谢性疾病中的作用已被初步认识,但其与肾脏功能之间的关联尚未被系统阐明。鉴于慢性肾脏病(CKD)的高发病率与代谢紊乱密切相关,阐明cMetS在其中的作用,可能为早期预警、风险分层或干预提供新的生物标志物或靶点。

目的

探讨cMetS早期筛查CKD的有效性,并通过控制相关因素降低目标人群患CKD的风险。

方法

2017—2021年,在安徽省12个县市的社区体检居民中,针对心血管疾病高危的60岁以上老年人,进行CKD早期筛查,共筛选收集了2 049份数据。将研究对象依据估算肾小球滤过率(eGFR)水平进行分组:eGFR<90 mL·min-1·(1.73 m2-1为低滤过率组,eGFR≥90 mL·min-1·(1.73 m2-1为正常组。采用多因素Logistic回归分析探讨cMetS四分位水平与eGFR降低风险的关系。

结果

低滤过率组(n=927)的年龄、体质量、BMI、WC、收缩压(SBP)、FPG、血肌酐(Scr)、尿素氮(BUN)、TG、腰高比(WHtR)、腰高比0.5(WHT.5R)、身体圆度指数(BRI)及cMetS均高于正常组(n=1 122),差异有统计学意义(P<0.05)。依据cMetS四分位间距分为S1~S4组,S1组-4.40~<-0.18分,S2组-0.18~<0.30分,S3组0.30~<0.79分,S4组0.79~4.96分。4组的身高(BH)、体质量、BMI、WC、SBP、DBP、MAP、FPG、Scr、TC、TG、低密度脂蛋白胆固醇(LDL-C)、WHtR、WHt.5R、BRI随cMetS水平升高而升高,BUN、HDL-C、eGFR随cMetS水平升高而降低(P<0.05)。与cMetS Q1组相比,S2、S3、S4组肾小球滤过率降低的风险升高(OR=1.462、1.656、1.652,P<0.05),与BMI M1组(16.51~<23.19 kg/m2)比较,M2(23.19~<25.31 kg/m2)、M3(25.31~<27.61 kg/m2)、M4组(27.61~<40.89 kg/m2)肾小球滤过率降低的风险升高(OR=1.373、1.328、1.385,P<0.05)。

结论

在60岁及以上人群中,随着cMetS水平升高,年龄增大、BMI增大、eGFR下降,cMetS升高和BMI升高是肾小球滤过率下降的独立危险因素。随着年龄的增长,肾脏的功能逐渐减退,而代谢综合征的存在会进一步加速这种衰退。对于这一目标人群,需要进行早期干预,以延缓肾功能恶化。

关键词: 代谢综合征, 连续代谢综合征评分, 肾小球滤过率, 慢性肾脏病, 安徽

CLC Number: