
Chinese General Practice ›› 2025, Vol. 28 ›› Issue (19): 2407-2413.DOI: 10.12114/j.issn.1007-9572.2023.0512
Special Issue: 乳腺癌最新文章合辑
• Article • Previous Articles Next Articles
Received:2024-08-25
Revised:2024-12-18
Published:2025-07-05
Online:2025-05-28
Contact:
XU Feng
通讯作者:
徐峰
作者简介:作者贡献:
罗云昭负责临床数据和穿刺病理WSI的收集和标注、统计学处理、深度学习模型的搭建及测试,并撰写论文初稿;蒋宏传提出临床数据研究指标,制定纳排标准,负责研究对象的选取;徐峰提出研究思路,设计研究方案,负责研究的质量控制及审校,并对论文负责;所有作者确认了论文的最终稿。
基金资助:CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chinagp.net/EN/10.12114/j.issn.1007-9572.2023.0512
| 组别 | 例数 | 年龄 | 组织学分级 | cT分期 | cN分期 | ER | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| <50岁 | ≥50岁 | Ⅰ~Ⅱ级 | Ⅲ级 | 1~2期 | 3~4期 | 0期 | 1~2期 | 阴性 | 阳性 | ||
| non-pCR组 | 155 | 61(39.4) | 94(60.6) | 106(68.4) | 49(31.6) | 138(89.0) | 17(11.0) | 48(31.0) | 107(69.0) | 34(21.9) | 121(78.1) |
| pCR组 | 40 | 13(32.5) | 27(67.5) | 19(47.5) | 21(52.5) | 37(92.5) | 3(7.5) | 16(40.0) | 24(60.0) | 22(55.0) | 18(45.0) |
| 检验统计量值 | 0.634 | 6.028 | 0.124a | 1.176 | 16.980 | ||||||
| P值 | 0.426 | 0.014 | 0.725 | 0.278 | <0.001 | ||||||
| 组别 | PR | HER2 | Ki-67 | 分子分型 | |||||||
| 阴性 | 阳性 | 阴性 | 阳性 | ≤20% | >20% | HR/HER2- | HR-/HER2+ | HR+/HER2+ | TNBC | ||
| non-pCR组 | 38(24.5) | 117(75.5) | 110(71.0) | 45(29.0) | 74(47.7) | 81(52.3) | 90(58.1) | 12(7.7) | 33(21.3) | 20(12.9) | |
| pCR组 | 25(62.5) | 15(37.5) | 16(40.0) | 24(60.0) | 10(25.0) | 30(75.0) | 7(17.5) | 13(32.5) | 11(27.5) | 9(22.5) | |
| 检验统计量值 | 20.975 | 13.336 | 6.706 | 28.231 | |||||||
| P值 | <0.001 | <0.001 | 0.010 | <0.001 | |||||||
Table 1 Comparison of clinical data between patients with pCR and non-pCR
| 组别 | 例数 | 年龄 | 组织学分级 | cT分期 | cN分期 | ER | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| <50岁 | ≥50岁 | Ⅰ~Ⅱ级 | Ⅲ级 | 1~2期 | 3~4期 | 0期 | 1~2期 | 阴性 | 阳性 | ||
| non-pCR组 | 155 | 61(39.4) | 94(60.6) | 106(68.4) | 49(31.6) | 138(89.0) | 17(11.0) | 48(31.0) | 107(69.0) | 34(21.9) | 121(78.1) |
| pCR组 | 40 | 13(32.5) | 27(67.5) | 19(47.5) | 21(52.5) | 37(92.5) | 3(7.5) | 16(40.0) | 24(60.0) | 22(55.0) | 18(45.0) |
| 检验统计量值 | 0.634 | 6.028 | 0.124a | 1.176 | 16.980 | ||||||
| P值 | 0.426 | 0.014 | 0.725 | 0.278 | <0.001 | ||||||
| 组别 | PR | HER2 | Ki-67 | 分子分型 | |||||||
| 阴性 | 阳性 | 阴性 | 阳性 | ≤20% | >20% | HR/HER2- | HR-/HER2+ | HR+/HER2+ | TNBC | ||
| non-pCR组 | 38(24.5) | 117(75.5) | 110(71.0) | 45(29.0) | 74(47.7) | 81(52.3) | 90(58.1) | 12(7.7) | 33(21.3) | 20(12.9) | |
| pCR组 | 25(62.5) | 15(37.5) | 16(40.0) | 24(60.0) | 10(25.0) | 30(75.0) | 7(17.5) | 13(32.5) | 11(27.5) | 9(22.5) | |
| 检验统计量值 | 20.975 | 13.336 | 6.706 | 28.231 | |||||||
| P值 | <0.001 | <0.001 | 0.010 | <0.001 | |||||||
| 变量 | B | SE | Waldχ2值 | P值 | OR(95%CI) |
|---|---|---|---|---|---|
| 组织学分级 | 0.285 | 0.345 | 0.683 | 0.409 | 1.330(0.676~2.617) |
| Ki-67 | 0.013 | 0.009 | 1.907 | 0.167 | 1.013(0.995~1.031) |
| 分子分型(以H R+/HER2-为参照) | — | — | 15.854 | 0.001 | — |
| H R-/HER2+ | 2.321 | 0.587 | 15.643 | <0.001 | 10.189(3.225~32.187) |
| H R+/HER2+ | 1.209 | 0.545 | 4.926 | 0.026 | 3.349(1.152~9.737) |
| TNBC | 1.158 | 0.659 | 3.084 | 0.079 | 3.183(0.874~11.592) |
Table 2 Binary Logistic regression analysis of influencing factors of pCR
| 变量 | B | SE | Waldχ2值 | P值 | OR(95%CI) |
|---|---|---|---|---|---|
| 组织学分级 | 0.285 | 0.345 | 0.683 | 0.409 | 1.330(0.676~2.617) |
| Ki-67 | 0.013 | 0.009 | 1.907 | 0.167 | 1.013(0.995~1.031) |
| 分子分型(以H R+/HER2-为参照) | — | — | 15.854 | 0.001 | — |
| H R-/HER2+ | 2.321 | 0.587 | 15.643 | <0.001 | 10.189(3.225~32.187) |
| H R+/HER2+ | 1.209 | 0.545 | 4.926 | 0.026 | 3.349(1.152~9.737) |
| TNBC | 1.158 | 0.659 | 3.084 | 0.079 | 3.183(0.874~11.592) |
| 分组 | AUC | 95%CI | ACC(%) | SENS(%) | SPEC(%) | PPV(%) | NPV(%) |
|---|---|---|---|---|---|---|---|
| AlexNet | |||||||
| T | 0.918 | 0.814~0.974 | 78.947 | 93.750 | 73.171 | 54.692 | 96.774 |
| V | 0.702 | 0.460~0.883 | 65.000 | 50.000 | 71.429 | 42.857 | 76.923 |
| ResNet101 | |||||||
| T | 0.951 | 0.859~0.991 | 80.702 | 93.750 | 75.610 | 60.000 | 96.875 |
| V | 0.833 | 0.601~0.960 | 80.000 | 66.667 | 85.714 | 66.667 | 85.714 |
| DenseNet121 | |||||||
| T | 0.938 | 0.840~0.984 | 89.474 | 81.250 | 92.683 | 81.250 | 92.683 |
| V | 0.833 | 0.601~0.960 | 75.000 | 58.333 | 82.143 | 58.333 | 82.143 |
| Inception-v3 | |||||||
| T | 0.946 | 0.888~0.979 | 90.517 | 90.000 | 90.625 | 66.667 | 97.753 |
| V | 0.777 | 0.615~0.894 | 73.333 | 66.667 | 76.190 | 54.545 | 84.211 |
| VGG19 | |||||||
| T | 0.931 | 0.832~0.981 | 80.702 | 78.049 | 87.500 | 94.118 | 60.870 |
| V | 0.881 | 0.659~0.981 | 90.000 | 92.857 | 83.333 | 92.857 | 83.333 |
| I-T | 0.914 | 0.694~0.993 | 84.211 | 85.714 | 80.000 | 92.308 | 66.667 |
Table 3 Effect comparison of different feature extraction networks and the result of the test set with VGG19
| 分组 | AUC | 95%CI | ACC(%) | SENS(%) | SPEC(%) | PPV(%) | NPV(%) |
|---|---|---|---|---|---|---|---|
| AlexNet | |||||||
| T | 0.918 | 0.814~0.974 | 78.947 | 93.750 | 73.171 | 54.692 | 96.774 |
| V | 0.702 | 0.460~0.883 | 65.000 | 50.000 | 71.429 | 42.857 | 76.923 |
| ResNet101 | |||||||
| T | 0.951 | 0.859~0.991 | 80.702 | 93.750 | 75.610 | 60.000 | 96.875 |
| V | 0.833 | 0.601~0.960 | 80.000 | 66.667 | 85.714 | 66.667 | 85.714 |
| DenseNet121 | |||||||
| T | 0.938 | 0.840~0.984 | 89.474 | 81.250 | 92.683 | 81.250 | 92.683 |
| V | 0.833 | 0.601~0.960 | 75.000 | 58.333 | 82.143 | 58.333 | 82.143 |
| Inception-v3 | |||||||
| T | 0.946 | 0.888~0.979 | 90.517 | 90.000 | 90.625 | 66.667 | 97.753 |
| V | 0.777 | 0.615~0.894 | 73.333 | 66.667 | 76.190 | 54.545 | 84.211 |
| VGG19 | |||||||
| T | 0.931 | 0.832~0.981 | 80.702 | 78.049 | 87.500 | 94.118 | 60.870 |
| V | 0.881 | 0.659~0.981 | 90.000 | 92.857 | 83.333 | 92.857 | 83.333 |
| I-T | 0.914 | 0.694~0.993 | 84.211 | 85.714 | 80.000 | 92.308 | 66.667 |
Figure 2 Comparison of receiver operating characteristic(ROC)curves between DL-CNB and clinical data-Logistic regression model for predicting pCR of patients from independent test set
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
徐春燕,谢嘉伟,杨春霞,等. 基于病理穿刺切片组织形态学分析的乳腺癌新辅助化疗疗效预测[J]. 四川大学学报(医学版),2021,52(2):279-285. DOI:10.12182/20210360505.
|
| [1] | YANG Chen, CHEN Tong, ZHANG Lifang, ZHANG Hongxu, LI Pengfei, ZHANG Xuejuan. Prognostic Impact of Dapagliflozin in Elderly Breast Cancer Survivors with Heart Failure with Preserved Ejection Fraction and Type 2 Diabetes [J]. Chinese General Practice, 2025, 28(24): 3053-3058. |
| [2] | DENG Yaqian, CAO Chunli, MA Jinmei, LI Wenxiao, XU Zelin, CHENG Jing, LI Jun. Predictive Value of S-Detect Combined with Virtual Touch Tissue Imaging Quantification in Axillary Lymph Node Metastasis of Breast Cancer [J]. Chinese General Practice, 2025, 28(17): 2149-2155. |
| [3] | HE Yun, FAN Huanfang, MA Pan, XU Shaoqing, YANG Liu, JIN Mingzhe, ZHANG Mingrui, CHEN Jiaqi. Effect of Postoperative Upper Extremity Lymphedema after Breast Cancer Treated with Different Acupuncture and Moxibustion Therapies: a Network Meta-analysis [J]. Chinese General Practice, 2025, 28(14): 1788-1794. |
| [4] | WU Mengjuan, ZHANG Tao, GAO Chunjie, ZHAO Ting, WANG Lei. Joint-modeling of Estradiol Levels and Survival Data of Breast Cancer Patients in the Case-cohort Design [J]. Chinese General Practice, 2025, 28(14): 1765-1772. |
| [5] | SHEN Aomei, LU Qian, FU Xin, WEI Xiaoxia, BIAN Jingru, ZHANG Liyuan, QIANG Wanmin, PANG Dong. Constructing a Risk Prediction Model of Breast Cancer-related Lymphedema Based on a Meta-analysis of Prospective Cohort Studies [J]. Chinese General Practice, 2023, 26(17): 2078-2088. |
| [6] | ZHANG Hao,LIU Ruirui,ZHU Lin,BO Dingxi,ZHONG Yizhu,LIANG Yun,GAO Jing. Risk Factors for Breast Cancer-related Lymphedema in Chinese Women:a Meta-analysis [J]. Chinese General Practice, 2021, 24(26): 3349-3358. |
| [7] | WU Wenxia,ZHANG Meng. Study on the Effect of Baseline Blood Lipid Level on the Prognosis of Patients with Non-triple-negative Breast Cancer [J]. Chinese General Practice, 2021, 24(26): 3316-3322. |
| [8] | LI Xiaobin,WANG Bin. Skin metastasis of breast cancer misdiagnosed as sebaceous cyst with infection:a case report [J]. Chinese General Practice, 2020, 23(20): 2604-2606. |
| [9] | YANG Hongkuan. Advances in Research on Precision Therapy in Asthma Treatment [J]. Chinese General Practice, 2020, 23(15): 1843-1848. |
| [10] | LUO Yue-qiong,LIAO Da-zhong. Therapeutic Effect of Shenbai Fuzheng Granules Combined with Apatinib in the Treatment of Metastatic Breast Cancer with Multi-line Therapy Failure [J]. Chinese General Practice, 2018, 21(25): 3107-3112. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||