Chinese General Practice ›› 2023, Vol. 26 ›› Issue (26): 3259-3268.DOI: 10.12114/j.issn.1007-9572.2023.0002
Special Issue: 内分泌代谢性疾病最新文章合辑
• Original Research·Monographic Research·Type 2 Diabetic • Previous Articles Next Articles
Received:
2022-11-08
Revised:
2023-01-15
Published:
2023-09-15
Online:
2023-02-16
Contact:
LI Xiaomiao
通讯作者:
李晓苗
作者简介:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chinagp.net/EN/10.12114/j.issn.1007-9572.2023.0002
变量 | 开发队列(n=906) | 验证队列(n=357) | 检验统计量值 | P值 |
---|---|---|---|---|
性别〔例(%)〕 | 0.978 | 0.323 | ||
男 | 625(69.0) | 236(66.1) | ||
女 | 281(31.0) | 121(33.9) | ||
年龄〔M(P25,P75),岁〕 | 55.0(47.0,64.0) | 58.0(49.0,65.0) | -2.295a | 0.022 |
糖尿病家族史〔例(%)〕 | 0.669 | 0.413 | ||
是 | 421(46.5) | 175(49.0) | ||
否 | 485(53.5) | 182(51.0) | ||
高血压家族史〔例(%)〕 | 0.012 | 0.914 | ||
是 | 203(22.4) | 81(22.7) | ||
否 | 703(77.6) | 276(77.3) | ||
糖尿病病程〔M(P25,P75),年〕 | 8.0(2.0,14.0) | 8.0(3.5,14.0) | -0.917a | 0.359 |
生活方式 | ||||
吸烟〔例(%)〕 | 0.004 | 0.951 | ||
是 | 390(43.0) | 153(42.9) | ||
否 | 516(57.0) | 204(57.1) | ||
饮酒〔例(%)〕 | 0.214 | 0.644 | ||
是 | 227(25.1) | 85(23.8) | ||
否 | 679(74.9) | 272(76.2) | ||
生理指标 | ||||
SBP( | 134±17 | 134±18 | 0.494b | 0.621 |
DBP( | 82±10 | 81±11 | 1.613b | 0.107 |
BMI( | 26.7±3.9 | 26.6±3.9 | 0.469b | 0.639 |
腹型肥胖〔例(%)〕 | 0.192 | 0.661 | ||
是 | 536(59.2) | 216(60.5) | ||
否 | 370(40.8) | 141(39.5) | ||
实验室检查指标 | ||||
FPG( | 8.70±2.78 | 8.69±2.55 | 0.044b | 0.965 |
HbA1c( | 8.92±1.76 | 9.03±1.80 | -0.993b | 0.321 |
TG( | 2.29±2.09 | 2.20±1.80 | 0.716b | 0.474 |
TC( | 4.33±1.08 | 4.35±1.06 | -0.295b | 0.768 |
LDL-C( | 2.41±0.84 | 2.40±0.82 | 0.181b | 0.865 |
HDL-C( | 1.00±0.22 | 1.01±0.25 | -1.062b | 0.289 |
BUN( | 5.96±2.65 | 5.99±2.26 | -0.189b | 0.850 |
UA( | 328.04±96.91 | 328.13±92.55 | -0.016b | 0.988 |
Cys-C( | 1.12±0.57 | 1.11±0.47 | 0.199b | 0.843 |
eGFR〔 | 96.96±30.63 | 95.90±29.15 | 0.566b | 0.572 |
NLR( | 2.33±1.76 | 2.28±1.52 | 0.428b | 0.668 |
UACR〔例(%)〕 | 1.495 | 0.221 | ||
MAU(30~300 mg/g) | 680(75.1) | 256(71.7) | ||
CAU(>300 mg/g) | 226(24.9) | 101(28.3) | ||
伴发疾病 | ||||
DR〔例(%)〕 | 0.190 | 0.663 | ||
是 | 298(32.9) | 122(34.2) | ||
否 | 608(67.1) | 235(65.8) | ||
ASCVD〔例(%)〕 | 0.003 | 0.958 | ||
是 | 217(24.0) | 85(23.8) | ||
否 | 689(76.0) | 272(76.2) | ||
药物使用情况 | ||||
降脂药物 | ||||
贝特类〔例(%)〕 | 0.230 | 0.631 | ||
是 | 64(7.1) | 28(7.8) | ||
否 | 842(92.9) | 329(92.2) | ||
他汀类〔例(%)〕 | 3.305 | 0.069 | ||
是 | 408(45.0) | 181(50.7) | ||
否 | 498(55.0) | 176(49.3) | ||
ACEI/ARB降压药〔例(%)〕 | 1.017 | 0.313 | ||
是 | 474(52.3) | 198(55.5) | ||
否 | 432(47.7) | 159(44.5) | ||
降糖药物 | ||||
二甲双胍〔例(%)〕 | 1.314 | 0.252 | ||
是 | 465(51.3) | 196(54.9) | ||
否 | 441(48.7) | 161(45.1) | ||
α-葡萄糖苷酶抑制剂〔例(%)〕 | 0.188 | 0.665 | ||
是 | 146(16.1) | 54(15.1) | ||
否 | 760(83.9) | 303(84.9) | ||
注射基础胰岛素〔例(%)〕 | 0.120 | 0.729 | ||
是 | 219(24.2) | 83(23.2) | ||
否 | 687(75.8) | 274(76.8) |
Table 1 Comparison of clinical indicators between the development cohort and validation cohort
变量 | 开发队列(n=906) | 验证队列(n=357) | 检验统计量值 | P值 |
---|---|---|---|---|
性别〔例(%)〕 | 0.978 | 0.323 | ||
男 | 625(69.0) | 236(66.1) | ||
女 | 281(31.0) | 121(33.9) | ||
年龄〔M(P25,P75),岁〕 | 55.0(47.0,64.0) | 58.0(49.0,65.0) | -2.295a | 0.022 |
糖尿病家族史〔例(%)〕 | 0.669 | 0.413 | ||
是 | 421(46.5) | 175(49.0) | ||
否 | 485(53.5) | 182(51.0) | ||
高血压家族史〔例(%)〕 | 0.012 | 0.914 | ||
是 | 203(22.4) | 81(22.7) | ||
否 | 703(77.6) | 276(77.3) | ||
糖尿病病程〔M(P25,P75),年〕 | 8.0(2.0,14.0) | 8.0(3.5,14.0) | -0.917a | 0.359 |
生活方式 | ||||
吸烟〔例(%)〕 | 0.004 | 0.951 | ||
是 | 390(43.0) | 153(42.9) | ||
否 | 516(57.0) | 204(57.1) | ||
饮酒〔例(%)〕 | 0.214 | 0.644 | ||
是 | 227(25.1) | 85(23.8) | ||
否 | 679(74.9) | 272(76.2) | ||
生理指标 | ||||
SBP( | 134±17 | 134±18 | 0.494b | 0.621 |
DBP( | 82±10 | 81±11 | 1.613b | 0.107 |
BMI( | 26.7±3.9 | 26.6±3.9 | 0.469b | 0.639 |
腹型肥胖〔例(%)〕 | 0.192 | 0.661 | ||
是 | 536(59.2) | 216(60.5) | ||
否 | 370(40.8) | 141(39.5) | ||
实验室检查指标 | ||||
FPG( | 8.70±2.78 | 8.69±2.55 | 0.044b | 0.965 |
HbA1c( | 8.92±1.76 | 9.03±1.80 | -0.993b | 0.321 |
TG( | 2.29±2.09 | 2.20±1.80 | 0.716b | 0.474 |
TC( | 4.33±1.08 | 4.35±1.06 | -0.295b | 0.768 |
LDL-C( | 2.41±0.84 | 2.40±0.82 | 0.181b | 0.865 |
HDL-C( | 1.00±0.22 | 1.01±0.25 | -1.062b | 0.289 |
BUN( | 5.96±2.65 | 5.99±2.26 | -0.189b | 0.850 |
UA( | 328.04±96.91 | 328.13±92.55 | -0.016b | 0.988 |
Cys-C( | 1.12±0.57 | 1.11±0.47 | 0.199b | 0.843 |
eGFR〔 | 96.96±30.63 | 95.90±29.15 | 0.566b | 0.572 |
NLR( | 2.33±1.76 | 2.28±1.52 | 0.428b | 0.668 |
UACR〔例(%)〕 | 1.495 | 0.221 | ||
MAU(30~300 mg/g) | 680(75.1) | 256(71.7) | ||
CAU(>300 mg/g) | 226(24.9) | 101(28.3) | ||
伴发疾病 | ||||
DR〔例(%)〕 | 0.190 | 0.663 | ||
是 | 298(32.9) | 122(34.2) | ||
否 | 608(67.1) | 235(65.8) | ||
ASCVD〔例(%)〕 | 0.003 | 0.958 | ||
是 | 217(24.0) | 85(23.8) | ||
否 | 689(76.0) | 272(76.2) | ||
药物使用情况 | ||||
降脂药物 | ||||
贝特类〔例(%)〕 | 0.230 | 0.631 | ||
是 | 64(7.1) | 28(7.8) | ||
否 | 842(92.9) | 329(92.2) | ||
他汀类〔例(%)〕 | 3.305 | 0.069 | ||
是 | 408(45.0) | 181(50.7) | ||
否 | 498(55.0) | 176(49.3) | ||
ACEI/ARB降压药〔例(%)〕 | 1.017 | 0.313 | ||
是 | 474(52.3) | 198(55.5) | ||
否 | 432(47.7) | 159(44.5) | ||
降糖药物 | ||||
二甲双胍〔例(%)〕 | 1.314 | 0.252 | ||
是 | 465(51.3) | 196(54.9) | ||
否 | 441(48.7) | 161(45.1) | ||
α-葡萄糖苷酶抑制剂〔例(%)〕 | 0.188 | 0.665 | ||
是 | 146(16.1) | 54(15.1) | ||
否 | 760(83.9) | 303(84.9) | ||
注射基础胰岛素〔例(%)〕 | 0.120 | 0.729 | ||
是 | 219(24.2) | 83(23.2) | ||
否 | 687(75.8) | 274(76.8) |
变量 | MAU组(n=680) | CAU组(n=226) | 检验统计量值 | P值 |
---|---|---|---|---|
性别〔例(%)〕 | 0.420 | 0.517 | ||
男 | 473(69.6) | 152(67.3) | ||
女 | 207(30.4) | 74(32.7) | ||
年龄〔M(P25,P75),岁〕 | 55.0(46.0,64.0) | 56.0(49.8,65.0) | -2.459a | 0.014 |
糖尿病家族史〔例(%)〕 | 0.848 | 0.357 | ||
是 | 310(45.6) | 111(49.1) | ||
否 | 370(54.4) | 115(50.9) | ||
高血压家族史〔例(%)〕 | 0.449 | 0.503 | ||
是 | 156(22.9) | 47(20.8) | ||
否 | 524(77.1) | 179(79.2) | ||
糖尿病病程〔M(P25,P75),年〕 | 6.00(2.0,12.0) | 12.0(6.8,17.0) | -7.818a | <0.001 |
生活方式 | ||||
吸烟〔例(%)〕 | 0.071 | 0.790 | ||
是 | 291(42.8) | 99(43.8) | ||
否 | 389(57.2) | 127(56.2) | ||
饮酒〔例(%)〕 | 2.335 | 0.126 | ||
是 | 179(26.3) | 48(21.2) | ||
否 | 501(73.7) | 178(78.8) | ||
生理指标 | ||||
SBP( | 132±15 | 143±19 | -8.070b | <0.001 |
DBP( | 82±10 | 85±11 | -3.553b | <0.001 |
BMI( | 26.8±3.8 | 26.4±4.1 | 1.381b | 0.168 |
腹型肥胖〔例(%)〕 | 1.097 | 0.295 | ||
是 | 409(60.1) | 127(56.2) | ||
否 | 271(39.9) | 99(43.8) | ||
实验室检查指标 | ||||
FPG( | 8.65±2.62 | 8.84±3.22 | -0.809b | 0.419 |
HbA1c( | 8.84±1.72 | 9.14±1.87 | -2.192b | 0.029 |
TG〔M(P25,P75),mmol/L〕 | 1.76(1.18,2.57) | 1.61(1.20,2.43) | -1.150a | 0.250 |
TC( | 4.31±1.14 | 4.38±0.92 | -0.922b | 0.357 |
LDL-C( | 2.36±0.79 | 2.54±0.95 | -2.621b | 0.004 |
HDL-C( | 0.99±0.23 | 1.01±0.21 | -1.039b | 0.299 |
BUN( | 5.51±2.06 | 7.33±3.61 | -7.178b | <0.001 |
UA( | 321.60±96.03 | 347.42±97.18 | -3.492b | 0.001 |
Cys-C( | 1.00±0.45 | 1.47±0.71 | -9.221b | <0.001 |
eGFR〔 | 103.59±26.23 | 77.04±34.13 | 10.688b | <0.001 |
NLR( | 2.16±1.46 | 2.82±2.38 | -3.948b | <0.001 |
伴发疾病 | ||||
DR〔例(%)〕 | 98.292 | <0.001 | ||
是 | 163(24.0) | 135(59.7) | ||
否 | 517(76.0) | 91(40.3) | ||
ASCVD〔例(%)〕 | 2.546 | 0.111 | ||
是 | 154(22.6) | 63(27.9) | ||
否 | 526(77.4) | 163(72.1) | ||
药物使用情况 | ||||
降脂药物 | ||||
贝特类〔例(%)〕 | 0.347 | 0.556 | ||
是 | 50(7.4) | 14(6.2) | ||
否 | 630(92.6) | 212(93.8) | ||
他汀类〔例(%)〕 | 0.001 | 0.972 | ||
是 | 306(45.0) | 102(45.1) | ||
否 | 374(55.0) | 124(54.9) | ||
ACEI/ARB降压药〔例(%)〕 | 0.118 | 0.731 | ||
是 | 358(52.6) | 116(51.3) | ||
否 | 322(47.4) | 110(48.7) | ||
降糖药物 | ||||
二甲双胍〔例(%)〕 | 18.492 | <0.001 | ||
是 | 377(55.4) | 88(38.9) | ||
否 | 303(44.6) | 138(61.1) | ||
α-葡萄糖苷酶抑制剂〔例(%)〕 | 0.255 | 0.613 | ||
是 | 112(16.5) | 34(15.0) | ||
否 | 568(83.5) | 192(85.0) | ||
注射基础胰岛素〔例(%)〕 | 0.004 | 0.947 | ||
是 | 164(24.1) | 55(24.3) | ||
否 | 516(75.9) | 171(75.7) |
Table 2 Comparison of clinical parameters between microalbuminuria and macroalbuminuria in the development cohort
变量 | MAU组(n=680) | CAU组(n=226) | 检验统计量值 | P值 |
---|---|---|---|---|
性别〔例(%)〕 | 0.420 | 0.517 | ||
男 | 473(69.6) | 152(67.3) | ||
女 | 207(30.4) | 74(32.7) | ||
年龄〔M(P25,P75),岁〕 | 55.0(46.0,64.0) | 56.0(49.8,65.0) | -2.459a | 0.014 |
糖尿病家族史〔例(%)〕 | 0.848 | 0.357 | ||
是 | 310(45.6) | 111(49.1) | ||
否 | 370(54.4) | 115(50.9) | ||
高血压家族史〔例(%)〕 | 0.449 | 0.503 | ||
是 | 156(22.9) | 47(20.8) | ||
否 | 524(77.1) | 179(79.2) | ||
糖尿病病程〔M(P25,P75),年〕 | 6.00(2.0,12.0) | 12.0(6.8,17.0) | -7.818a | <0.001 |
生活方式 | ||||
吸烟〔例(%)〕 | 0.071 | 0.790 | ||
是 | 291(42.8) | 99(43.8) | ||
否 | 389(57.2) | 127(56.2) | ||
饮酒〔例(%)〕 | 2.335 | 0.126 | ||
是 | 179(26.3) | 48(21.2) | ||
否 | 501(73.7) | 178(78.8) | ||
生理指标 | ||||
SBP( | 132±15 | 143±19 | -8.070b | <0.001 |
DBP( | 82±10 | 85±11 | -3.553b | <0.001 |
BMI( | 26.8±3.8 | 26.4±4.1 | 1.381b | 0.168 |
腹型肥胖〔例(%)〕 | 1.097 | 0.295 | ||
是 | 409(60.1) | 127(56.2) | ||
否 | 271(39.9) | 99(43.8) | ||
实验室检查指标 | ||||
FPG( | 8.65±2.62 | 8.84±3.22 | -0.809b | 0.419 |
HbA1c( | 8.84±1.72 | 9.14±1.87 | -2.192b | 0.029 |
TG〔M(P25,P75),mmol/L〕 | 1.76(1.18,2.57) | 1.61(1.20,2.43) | -1.150a | 0.250 |
TC( | 4.31±1.14 | 4.38±0.92 | -0.922b | 0.357 |
LDL-C( | 2.36±0.79 | 2.54±0.95 | -2.621b | 0.004 |
HDL-C( | 0.99±0.23 | 1.01±0.21 | -1.039b | 0.299 |
BUN( | 5.51±2.06 | 7.33±3.61 | -7.178b | <0.001 |
UA( | 321.60±96.03 | 347.42±97.18 | -3.492b | 0.001 |
Cys-C( | 1.00±0.45 | 1.47±0.71 | -9.221b | <0.001 |
eGFR〔 | 103.59±26.23 | 77.04±34.13 | 10.688b | <0.001 |
NLR( | 2.16±1.46 | 2.82±2.38 | -3.948b | <0.001 |
伴发疾病 | ||||
DR〔例(%)〕 | 98.292 | <0.001 | ||
是 | 163(24.0) | 135(59.7) | ||
否 | 517(76.0) | 91(40.3) | ||
ASCVD〔例(%)〕 | 2.546 | 0.111 | ||
是 | 154(22.6) | 63(27.9) | ||
否 | 526(77.4) | 163(72.1) | ||
药物使用情况 | ||||
降脂药物 | ||||
贝特类〔例(%)〕 | 0.347 | 0.556 | ||
是 | 50(7.4) | 14(6.2) | ||
否 | 630(92.6) | 212(93.8) | ||
他汀类〔例(%)〕 | 0.001 | 0.972 | ||
是 | 306(45.0) | 102(45.1) | ||
否 | 374(55.0) | 124(54.9) | ||
ACEI/ARB降压药〔例(%)〕 | 0.118 | 0.731 | ||
是 | 358(52.6) | 116(51.3) | ||
否 | 322(47.4) | 110(48.7) | ||
降糖药物 | ||||
二甲双胍〔例(%)〕 | 18.492 | <0.001 | ||
是 | 377(55.4) | 88(38.9) | ||
否 | 303(44.6) | 138(61.1) | ||
α-葡萄糖苷酶抑制剂〔例(%)〕 | 0.255 | 0.613 | ||
是 | 112(16.5) | 34(15.0) | ||
否 | 568(83.5) | 192(85.0) | ||
注射基础胰岛素〔例(%)〕 | 0.004 | 0.947 | ||
是 | 164(24.1) | 55(24.3) | ||
否 | 516(75.9) | 171(75.7) |
Figure 1 The process of LASSO penalty regression screening predictive variables for progression from microalbuminuria to macroalbuminuria in type 2 diabetes patients
变量 | β | Wald χ2值 | P值 | OR | 95%CI |
---|---|---|---|---|---|
糖尿病病程 | 0.015 | 1.313 | 0.252 | 1.015 | (0.989,1.042) |
SBP | 0.024 | 18.443 | <0.001 | 1.024 | (1.013,1.035) |
HbA1c | 0.196 | 14.140 | <0.001 | 1.216 | (1.098,1.347) |
LDL-C | 0.260 | 6.335 | 0.012 | 1.297 | (1.059,1.589) |
Cys-C | 0.772 | 7.391 | 0.007 | 2.164 | (1.240,3.776) |
eGFR | -0.014 | 7.644 | 0.006 | 0.987 | (0.977,0.996) |
DR(以否为对照) | |||||
是 | 1.065 | 33.321 | <0.001 | 2.902 | (2.021,4.166) |
Table 3 Multivariate Logistic regression analysis of the influencing factors of progression from microalbuminuria to macroalbuminuria in type 2 diabetes patients
变量 | β | Wald χ2值 | P值 | OR | 95%CI |
---|---|---|---|---|---|
糖尿病病程 | 0.015 | 1.313 | 0.252 | 1.015 | (0.989,1.042) |
SBP | 0.024 | 18.443 | <0.001 | 1.024 | (1.013,1.035) |
HbA1c | 0.196 | 14.140 | <0.001 | 1.216 | (1.098,1.347) |
LDL-C | 0.260 | 6.335 | 0.012 | 1.297 | (1.059,1.589) |
Cys-C | 0.772 | 7.391 | 0.007 | 2.164 | (1.240,3.776) |
eGFR | -0.014 | 7.644 | 0.006 | 0.987 | (0.977,0.996) |
DR(以否为对照) | |||||
是 | 1.065 | 33.321 | <0.001 | 2.902 | (2.021,4.166) |
变量 | 赋值 |
---|---|
糖尿病病程(年) | <5=1,5~<10=2,≥10=3 |
SBP(mmHg) | <140=0,≥140=1 |
HbA1c(%) | <7.0=0,≥7.0=1 |
LDL-C(mmol/L) | <1.8=0,≥1.8=1 |
Cys-C(mg/L) | ≤1.09=0,>1.09=1 |
eGFR〔mL·min-1·(1.73 m2)-1〕 | <60=0,≥60=1 |
DR | 是=1,否=0 |
Table 4 The multi-layered assignment table of the predictive factors for progression from microalbuminuria to macroalbuminuria in type 2 diabetes patients
变量 | 赋值 |
---|---|
糖尿病病程(年) | <5=1,5~<10=2,≥10=3 |
SBP(mmHg) | <140=0,≥140=1 |
HbA1c(%) | <7.0=0,≥7.0=1 |
LDL-C(mmol/L) | <1.8=0,≥1.8=1 |
Cys-C(mg/L) | ≤1.09=0,>1.09=1 |
eGFR〔mL·min-1·(1.73 m2)-1〕 | <60=0,≥60=1 |
DR | 是=1,否=0 |
变量 | β | Wald χ2值 | P值 | OR | 95%CI |
---|---|---|---|---|---|
糖尿病病程(年) | |||||
5~<10 | -0.022 | 0.006 | 0.939 | 0.979 | (0.563,1.700) |
≥10 | 0.574 | 6.156 | 0.013 | 1.775 | (1.128,2.794) |
SBP(mmHg) | |||||
≥140 | 0.555 | 9.446 | 0.002 | 1.742 | (1.223,2.482) |
HbA1c(%) | |||||
≥7.0 | 0.833 | 8.238 | 0.004 | 2.301 | (1.302,4.065) |
LDL-C(mmol/L) | |||||
≥1.8 | 0.438 | 4.073 | 0.044 | 1.550 | (1.013,2.371) |
Cys-C(mg/L) | |||||
>1.09 | 1.364 | 44.220 | <0.001 | 3.911 | (2.616,5.846) |
eGFR〔mL·min-1·(1.73 m2)-1〕 | |||||
≥60 | -0.417 | 2.953 | 0.086 | 0.659 | (0.409,1.060) |
DR | |||||
是 | 1.099 | 35.429 | <0.001 | 3.001 | (2.090,4.310) |
Table 5 Multivariate Logistic regression analysis of the influencing factors of progression from microalbuminuria to macroalbuminuria in type 2 diabetes patients
变量 | β | Wald χ2值 | P值 | OR | 95%CI |
---|---|---|---|---|---|
糖尿病病程(年) | |||||
5~<10 | -0.022 | 0.006 | 0.939 | 0.979 | (0.563,1.700) |
≥10 | 0.574 | 6.156 | 0.013 | 1.775 | (1.128,2.794) |
SBP(mmHg) | |||||
≥140 | 0.555 | 9.446 | 0.002 | 1.742 | (1.223,2.482) |
HbA1c(%) | |||||
≥7.0 | 0.833 | 8.238 | 0.004 | 2.301 | (1.302,4.065) |
LDL-C(mmol/L) | |||||
≥1.8 | 0.438 | 4.073 | 0.044 | 1.550 | (1.013,2.371) |
Cys-C(mg/L) | |||||
>1.09 | 1.364 | 44.220 | <0.001 | 3.911 | (2.616,5.846) |
eGFR〔mL·min-1·(1.73 m2)-1〕 | |||||
≥60 | -0.417 | 2.953 | 0.086 | 0.659 | (0.409,1.060) |
DR | |||||
是 | 1.099 | 35.429 | <0.001 | 3.001 | (2.090,4.310) |
Figure 4 The calibration curve of the nomogram for predicting the risk of progression from microalbuminuria to macroalbuminuria in type 2 diabetes patients
Figure 5 The decision curve analysis of the nomogram for predicting the risk of progression from microalbuminuria to macroalbuminuria in type 2 diabetes patients
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
Use of glycated haemoglobin (HbA1c) in the diagnosis of diabetes mellitus:abbreviated report of a WHO consultation[M]. Geneva:World Health Organization,2011.
|
[14] |
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)[J]. 国际内分泌代谢杂志,2021,41(5):482-548. DOI:10.3760/cma.j.cn121383-20210825-08063.
|
[15] |
Addendum. 11. microvascular complications and foot care:Standards of medical care in diabetes-2021:diabetes care 2021;44(suppl. 1):S151-167[J]. Diabetes Care,2021,44(9):2186-2187. DOI:10.2337/dc21-ad09b.
|
[16] |
|
[17] |
|
[18] |
|
[19] |
American Diabetes Association. Nephropathy in diabetes[J]. Diabetes Care,2004,27(suppl_1):s79-83. DOI:10.2337/diacare.27.2007.s79.
|
[20] |
|
[21] |
卢作维,刘涛,刘向阳,等. 2型糖尿病患者发生微量白蛋白尿预测模型的建立与验证研究[J]. 中国全科医学,2021,24(36):4653-4660. DOI:10.12114/j.issn.1007-9572.2021.02.057.
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group[J]. Lancet,1998,352(9131):837-853.
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
中华医学会糖尿病学分会微血管并发症学组. 中国糖尿病肾脏病防治指南(2021年版)[J]. 中华糖尿病杂志,2021,13(8):762-784. DOI:10.3760/cma.j.cn115791-20210706-00369.
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[1] | ZHAO Xiaoqing, GUO Tongtong, ZHANG Xinyi, LI Linhong, ZHANG Ya, JI Lihong, DONG Zhiwei, GAO Qianqian, CAI Weiqing, ZHENG Wengui, JING Qi. Construction and Validation of a Risk Prediction Model for Cognitive Impairment in Community-dwelling Older Adults [J]. Chinese General Practice, 2025, 28(22): 2776-2783. |
[2] | QIN Yali, CHEN Jing, LI Jun, WANG Mingdong, OU Weizheng, QIU Jiyao, PENG Yanqing. Construction and Validation of a Predictive Model of Influencing Factors for Fluoroquinolone Resistance in Patients with Pulmonary Tuberculosis: Based on the LASSO-Logistic Regression Model [J]. Chinese General Practice, 2024, 27(30): 3776-3783. |
[3] | XU Yunjia, SHU Biyun, ZHENG Yongtao, CHEN Ting, LAI Fenhua, NI Mengjiao, LUO Xiulan, WU Hengjing. Risk Factors and Predictive Model of Long-term Bedridden Risk of Falls in Super-aged Population Based on Competing Risk Model Analysis [J]. Chinese General Practice, 2024, 27(18): 2192-2197. |
[4] | HUANG Ya, NI Wenji, ZHANG Rui, LI Dandan, ZHOU Ying, JIN Tao, ZHONG Yong. Correlation of Systemic Immune Inflammatory Index and Systemic Inflammatory Response Index with Microalbuminuria in Middle-aged and Elderly People Undergoing Health Examination [J]. Chinese General Practice, 2024, 27(18): 2186-2191. |
[5] | FAN Jing, WEI Shan, LI Liqiu, ZHENG Xiuli, LI Yan, NIU Jianying, WANG Ling, XU Chengyan. Investigation on the Incidence and Influencing Factors of Proteinuria and Renal Dysfunction in Community-dwelling Elderly Population [J]. Chinese General Practice, 2024, 27(09): 1048-1053. |
[6] | WU Shuqin, WANG Yuanhan, ZHENG Kaiyuan, HAN Hongjuan, KANG Jinxiu, YU Hongmei. Prognosis and Influencing Factors of Patients with Malignant Melanoma [J]. Chinese General Practice, 2024, 27(08): 942-947. |
[7] | TANG Can, LI Xiangyang, LI Jing, QIN Haoran, ZHU Hong. The Value of Nomogram Established by Serological Indicators and Tumor Diameter to Predict the Risk of Microvascular Invasion in Hepatocellular Carcinoma [J]. Chinese General Practice, 2023, 26(36): 4514-4520. |
[8] | WANG Zhen, SHEN Guoqi, LI Yanan, ZHU Yinghua, QIU Hang, ZHENG Di, XU Tongda, LI Wenhua. Development and Validation of a Risk Prediction Model for Contrast-induced Acute Kidney Injury after Percutaneous Coronary Intervention in Patients with Acute Myocardial Infarction [J]. Chinese General Practice, 2023, 26(29): 3650-3656. |
[9] | MENG Qizhe, XI Zhi, WANG Ming, WANG Yang, YANG Xiaopeng. Correlation of Blood Glucose Variability with Infarct Burden and Cognitive Impairment in Patients with Type 2 Diabetes Mellitus Complicated with Recent Small Subcortical Infarct [J]. Chinese General Practice, 2023, 26(15): 1885-1891. |
[10] | SUN Zhenzhen, LIU Huanhuan, CHEN Kaining, LOU Qingqing. New Advances in the Value of the Normal Urinary Albumin as a Predictor of Multiple Diseases [J]. Chinese General Practice, 2022, 25(33): 4191-4195. |
[11] | Zimo PAN, Lin CHU, Lingxia CHEN, Jingtong WANG. Association of Metrics Derived from a Flash Glucose Monitoring System with Urine Albumin-to-creatinine Ratio in T2DM Patients [J]. Chinese General Practice, 2022, 25(23): 2856-2863. |
[12] | Yilin MA, Jiangfeng KE, Junwei WANG, Lianxi LI. Relationship between Obesity and Proteinuria in Type 2 Diabetic Patients [J]. Chinese General Practice, 2022, 25(20): 2457-2461. |
[13] | Ming WANG, Zhi XI, Qizhe MENG, Xiaopeng YANG. Correlation of Glycemic Variability and Time in Range with Early Neurological Deterioration in Patients with Acute Ischemic Stroke and Diabetes [J]. Chinese General Practice, 2022, 25(12): 1418-1423. |
[14] | LU Zuowei,LIU Tao,LIU Xiangyang,WANG Qiong,LAI Jingbo,CHEN Yanyan,LI Xiaomiao. Construction and Verification of a Predictive Model for Microalbuminuriain Type 2 Diabetes Mellitus Patients [J]. Chinese General Practice, 2021, 24(36): 4653-4660. |
[15] | GUO Maodong,HU Liang,CHEN Yanping,SHI Xin,YE Xiaohua,WANG Qunying,ZHANG Yunyun,DING Jin. A Prediction Nomogram for High-risk Esophageal Varices in Cirrhosis Patients [J]. Chinese General Practice, 2021, 24(30): 3848-3855. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||