[69] |
HU Y L, MAI W H, CHEN L H, et al. mTOR-mediated metabolic reprogramming shapes distinct microglia functions in response to lipopolysaccharide and ATP[J]. Glia, 2020, 68(5):1031-1045. DOI: 10.1002/glia.23760.
|
[70] |
MCINTOSH A, MELA V, HARTY C, et al. Iron accumulation in microglia triggers a cascade of events that leads to altered metabolism and compromised function in APP/PS1 mice[J]. Brain Pathol, 2019, 29(5):606-621. DOI: 10.1111/bpa.12704.
|
[71] |
LIGUORI C, STEFANI A, SANCESARIO G, et al. CSF lactate levels,τ proteins,cognitive decline:a dynamic relationship in Alzheimer's disease[J]. J Neurol Neurosurg Psychiatry, 2015, 86(6):655-659. DOI: 10.1136/jnnp-2014-308577.
|
[72] |
WEI L, YANG X W, WANG J, et al. H3K18 lactylation of senescent microglia potentiates brain aging and Alzheimer's disease through the NFκB signaling pathway[J]. J Neuroinflammation, 2023, 20(1):208. DOI: 10.1186/s12974-023-02879-7.
|
[73] |
SUN R, PENG M N, XU P F, et al. Low-density lipoprotein receptor(LDLR)regulates NLRP3-mediated neuronal pyroptosis following cerebral ischemia/reperfusion injury[J]. J Neuroinflammation, 2020, 17(1):330. DOI: 10.1186/s12974-020-01988-x.
|
[74] |
|
[75] |
TANAKA H, SUEYOSHI K, NISHINO M, et al. Silent brain infarction and coronary artery disease in Japanese patients[J]. Arch Neurol, 1993, 50(7):706-709. DOI: 10.1001/archneur.1993.00540070026009.
|
[76] |
SACCO R L, KARGMAN D E, GU Q, et al. Race-ethnicity and determinants of intracranial atherosclerotic cerebral infarction. The Northern Manhattan Stroke Study[J]. Stroke, 1995, 26(1):14-20. DOI: 10.1161/01.str.26.1.14.
|
[77] |
ZHANG R, LIU Y, ZHANG C, et al. Salt-inducible kinase 2 regulates energy metabolism in rats with cerebral ischemia-reperfusion[J]. J Zhejiang Univ Med Sci, 2021, 50(3):352-360. DOI: 10.3724/zdxbyxb-2021-0164.
|
[78] |
ZHAO X Y, LI S, MO Y C, et al. DCA protects against oxidation injury attributed to cerebral ischemia-reperfusion by regulating glycolysis through PDK2-PDH-Nrf2 axis[J]. Oxid Med Cell Longev, 2021, 2021:5173035. DOI: 10.1155/2021/5173035.
|
[79] |
WEN M L, JIN Y, ZHANG H, et al. Proteomic analysis of rat cerebral cortex in the subacute to long-term phases of focal cerebral ischemia-reperfusion injury[J]. J Proteome Res, 2019, 18(8):3099-3118. DOI: 10.1021/acs.jproteome.9b00220.
|
[80] |
ZHANG W, XU L, YU Z F, et al. Inhibition of the glycolysis prevents the cerebral infarction progression through decreasing the lactylation levels of LCP1[J]. Mol Biotechnol, 2023, 65(8):1336-1345. DOI: 10.1007/s12033-022-00643-5.
|
[81] |
YAO X, LI C. Lactate dehydrogenase A mediated histone lactylation induced the pyroptosis through targeting HMGB1[J]. Metab Brain Dis, 2023, 38(5):1543-1553. DOI: 10.1007/s11011-023-01195-6.
|
[82] |
MARTIN S S, ADAY A W, ALMARZOOQ Z I, et al. 2024 heart disease and stroke statistics:a report of US and global data from the American heart association[J]. Circulation, 2024, 149(8):e347-e913. DOI: 10.1161/CIR.0000000000001209.
|
[83] |
KOVACIC J C, DIMMELER S, HARVEY R P, et al. Endothelial to mesenchymal transition inCardiovascular disease:JACC state-of-the-art review[J]. J Am Coll Cardiol, 2019, 73(2):190-209. DOI: 10.1016/j.jacc.2018.09.089.
|
[84] |
TOMBOR L S, JOHN D, GLASER S F, et al. Single cell sequencing reveals endothelial plasticity with transient mesenchymal activation after myocardial infarction[J]. Nat Commun, 2021, 12(1):681. DOI: 10.1038/s41467-021-20905-1.
|
[85] |
GOUMANS M J, TEN DIJKE P. TGF-β signaling in control of cardiovascular function[J]. Cold Spring Harb Perspect Biol, 2018, 10(2):a022210. DOI: 10.1101/cshperspect.a022210.
|
[86] |
KOKUDO T, SUZUKI Y, YOSHIMATSU Y, et al. Snail is required for TGFbeta-induced endothelial-mesenchymal transition of embryonic stem cell-derived endothelial cells[J]. J Cell Sci, 2008, 121(Pt 20):3317-3324. DOI: 10.1242/jcs.028282.
|
[1] |
FAN H Q, YANG F, XIAO Z H, et al. Lactylation:novel epigenetic regulatory and therapeutic opportunities[J]. Am J Physiol Endocrinol Metab, 2023, 324(4):E330-338. DOI: 10.1152/ajpendo.00159.2022.
|
[2] |
LI X L, YANG Y Y, ZHANG B, et al. Lactate metabolism in human health and disease[J]. Signal Transduct Target Ther, 2022, 7(1):305. DOI: 10.1038/s41392-022-01151-3.
|
[3] |
KAWAKAMI S, JOHMURA Y, NAKANISHI M. Intracellular acidification and glycolysis modulate inflammatory pathway in senescent cells[J]. J Biochem, 2024, 176(2):97-108. DOI: 10.1093/jb/mvae032.
|
[4] |
PAN R Y, HE L, ZHANG J, et al. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer's disease[J]. Cell Metab, 2022, 34(4):634-648.e6. DOI: 10.1016/j.cmet.2022.02.013.
|
[5] |
ZHANG N J, ZHANG Y, XU J Q, et al. α-myosin heavy chain lactylation maintains sarcomeric structure and function and alleviates the development of heart failure[J]. Cell Res, 2023, 33(9):679-698. DOI: 10.1038/s41422-023-00844-w.
|
[6] |
RHO H, TERRY A R, CHRONIS C, et al. Hexokinase 2-mediated gene expression via histone lactylation is required for hepatic stellate cell activation and liver fibrosis[J]. Cell Metab, 2023, 35(8):1406-1423.e8. DOI: 10.1016/j.cmet.2023.06.013.
|
[7] |
WU J H, HU M, JIANG H, et al. Endothelial cell-derived lactate triggers bone mesenchymal stem cell histone lactylation to attenuate osteoporosis[J]. Adv Sci, 2023, 10(31):e2301300. DOI: 10.1002/advs.202301300.
|
[8] |
DU S Y, ZHANG X J, JIA Y X, et al. Hepatocyte HSPA12A inhibits macrophage chemotaxis and activation to attenuate liver ischemia/reperfusion injury via suppressing glycolysis-mediated HMGB1 lactylation and secretion of hepatocytes[J]. Theranostics, 2023, 13(11):3856-3871. DOI: 10.7150/thno.82607.
|
[9] |
FAN M, YANG K, WANG X H, et al. Lactate promotes endothelial-to-mesenchymal transition via Snail1 lactylation after myocardial infarction[J]. Sci Adv, 2023, 9(5):eadc9465. DOI: 10.1126/sciadv.adc9465.
|
[87] |
ZYMLIŃSKI R, BIEGUS J, SOKOLSKI M, et al. Increased blood lactate is prevalent and identifies poor prognosis in patients with acute heart failure without overt peripheral hypoperfusion[J]. Eur J Heart Fail, 2018, 20(6):1011-1018. DOI: 10.1002/ejhf.1156.
|
[88] |
BIEGUS J, ZYMLIŃSKI R, SOKOLSKI M, et al. Clinical,respiratory,haemodynamic,and metabolic determinants of lactate in heart failure[J]. Kardiol Pol, 2019, 77(1):47-52. DOI: 10.5603/KP.a2018.0240.
|
[89] |
NAHRENDORF M, SWIRSKI F K. Innate immune cells in ischaemic heart disease:does myocardial infarction beget myocardial infarction?[J]. Eur Heart J, 2016, 37(11):868-872. DOI: 10.1093/eurheartj/ehv453.
|
[90] |
HILGENDORF I, GERHARDT L M, TAN T C, et al. Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium[J]. Circ Res, 2014, 114(10):1611-1622. DOI: 10.1161/CIRCRESAHA.114.303204.
|
[91] |
WANG N X, WANG W W, WANG X Q, et al. Histone lactylation boosts reparative gene activation post-myocardial infarction[J]. Circ Res, 2022, 131(11):893-908. DOI: 10.1161/CIRCRESAHA.122.320488.
|
[92] |
MURASHIGE D, JANG C, NEINAST M, et al. Comprehensive quantification of fuel use by the failing and nonfailing human heart[J]. Science, 2020, 370(6514):364-368. DOI: 10.1126/science.abc8861.
|
[93] |
KARWI Q G, ZHANG L Y, ALTAMIMI T R, et al. Weight loss enhances cardiac energy metabolism and function in heart failure associated with obesity[J]. Diabetes Obes Metab, 2019, 21(8):1944-1955. DOI: 10.1111/dom.13762.
|
[94] |
CLUNTUN A A, BADOLIA R, LETTLOVA S, et al. The pyruvate-lactate axis modulates cardiac hypertrophy and heart failure[J]. Cell Metab, 2021, 33(3):629-648.e10. DOI: 10.1016/j.cmet.2020.12.003.
|
[95] |
DAI C S, LI Q F, MAY H I, et al. Lactate dehydrogenase A governs cardiac hypertrophic growth in response to hemodynamic stress[J]. Cell Rep, 2020, 32(9):108087. DOI: 10.1016/j.celrep.2020.108087.
|
[10] |
ZHANG D, TANG Z Y, HUANG H, et al. Metabolic regulation of gene expression by histone lactylation[J]. Nature, 2019, 574(7779):575-580. DOI: 10.1038/s41586-019-1678-1.
|
[11] |
YANG C G, PAN R Y, GUAN F X, et al. Lactate metabolism in neurodegenerative diseases[J]. Neural Regen Res, 2024, 19(1):69-74. DOI: 10.4103/1673-5374.374142.
|
[12] |
CHEN A N, LUO Y, YANG Y H, et al. Lactylation,a novel metabolic reprogramming code:current status and prospects[J]. Front Immunol, 2021, 12:688910. DOI: 10.3389/fimmu.2021.688910.
|
[13] |
BROWN T P, GANAPATHY V. Lactate/GPR81 signaling and proton motive force in cancer:role in angiogenesis,immune escape,nutrition,and Warburg phenomenon[J]. Pharmacol Ther, 2020, 206:107451. DOI: 10.1016/j.pharmthera.2019.107451.
|
[14] |
FELMLEE M A, JONES R S, RODRIGUEZ-CRUZ V, et al. Monocarboxylate transporters(SLC16):function,regulation,and role in health and disease[J]. Pharmacol Rev, 2020, 72(2):466-485. DOI: 10.1124/pr.119.018762.
|
[15] |
HALESTRAP A P. The SLC16 gene family - structure,role and regulation in health and disease[J]. Mol Aspects Med, 2013, 34(2/3):337-349. DOI: 10.1016/j.mam.2012.05.003.
|
[16] |
BONEN A, HEYNEN M, HATTA H. Distribution of monocarboxylate transporters MCT1-MCT8 in rat tissues and human skeletal muscle[J]. Physiol Appl Nutr Metab, 2006, 31(1):31-39. DOI: 10.1139/h05-002.
|
[17] |
ZHANG Y, PENG Q, ZHENG J H, et al. The function and mechanism of lactate and lactylation in tumor metabolism and microenvironment[J]. Genes Dis, 2023, 10(5):2029-2037. DOI: 10.1016/j.gendis.2022.10.006.
|
[18] |
SADAKIERSKA-CHUDY A, FILIP M. A comprehensive view of the epigenetic landscape. PartⅡ:Histone post-translational modification,nucleosome level,and chromatin regulation by ncRNAs[J]. Neurotox Res, 2015, 27(2):172-197. DOI: 10.1007/s12640-014-9508-6.
|
[96] |
BOSSO G, MERCURIO V, DIAB N, et al. Time-weighted lactate as a predictor of adverse outcome in acute heart failure[J]. ESC Heart Fail, 2021, 8(1):539-545. DOI: 10.1002/ehf2.13112.
|
[97] |
HAEGE E R, HUANG H C, HUANG C C. Identification of lactate as a cardiac protectant by inhibiting inflammation and cardiac hypertrophy using a zebrafish acute heart failure model[J]. Pharmaceuticals, 2021, 14(3):261. DOI: 10.3390/ph14030261.
|
[98] |
NALOS M, LEVERVE X, HUANG S, et al. Half-molar sodium lactate infusion improves cardiac performance in acute heart failure:a pilot randomised controlled clinical trial[J]. Crit Care, 2014, 18(2):R48. DOI: 10.1186/cc13793.
|
[99] |
SANGHANI-KERAI A, OSAGIE-CLOUARD L, BLUNN G, et al. The influence of age and osteoporosis on bone marrow stem cells from rats[J]. Bone Joint Res, 2018, 7(4):289-297. DOI: 10.1302/2046-3758.74.BJR-2017-0302.R1.
|
[100] |
MORRISON S J, SCADDEN D T. The bone marrow niche for haematopoietic stem cells[J]. Nature, 2014, 505(7483):327-334. DOI: 10.1038/nature12984.
|
[101] |
|
[102] |
|
[103] |
SCHAFER M J, WHITE T A, IIJIMA K, et al. Cellular senescence mediates fibrotic pulmonary disease[J]. Nat Commun, 2017, 8:14532. DOI: 10.1038/ncomms14532.
|
[104] |
CHANDA D, OTOUPALOVA E, SMITH S R, et al. Developmental pathways in the pathogenesis of lung fibrosis[J]. Mol Aspects Med, 2019, 65:56-69. DOI: 10.1016/j.mam.2018.08.004.
|
[19] |
LU C C, CORADIN M, PORTER E G, et al. Accelerating the field of epigenetic histone modification through mass spectrometry-based approaches[J]. Mol Cell Proteomics, 2021, 20:100006. DOI: 10.1074/mcp.R120.002257.
|
[20] |
GONG F D, MILLER K M. Histone methylation and the DNA damage response[J]. Mutat Res Rev Mutat Res, 2019, 780:37-47. DOI: 10.1016/j.mrrev.2017.09.003.
|
[21] |
KOPRINAROVA M, SCHNEKENBURGER M, DIEDERICH M. Role of histone acetylation in cell cycle regulation[J]. Curr Top Med Chem, 2016, 16(7):732-744. DOI: 10.2174/1568026615666150825140822.
|
[22] |
GRUNSTEIN M. Histone acetylation in chromatin structure and transcription[J]. Nature, 1997, 389(6649):349-352. DOI: 10.1038/38664.
|
[23] |
SCHAFT D, ROGUEV A, KOTOVIC K M, et al. The histone 3 lysine 36 methyltransferase,SET2,is involved in transcriptional elongation[J]. Nucleic Acids Res, 2003, 31(10):2475-2482. DOI: 10.1093/nar/gkg372.
|
[24] |
PAN L H, FENG F, WU J Q, et al. Demethylzeylasteral targets lactate by inhibiting histone lactylation to suppress the tumorigenicity of liver cancer stem cells[J]. Pharmacol Res, 2022, 181:106270. DOI: 10.1016/j.phrs.2022.106270.
|
[25] |
DAI W L, WU G, LIU K, et al. Lactate promotes myogenesis via activating H3K9 lactylation-dependent up-regulation of Neu2 expression[J]. J Cachexia Sarcopenia Muscle, 2023, 14(6):2851-2865. DOI: 10.1002/jcsm.13363.
|
[26] |
XU H Y, LI L Q, WANG S S, et al. Royal jelly acid suppresses hepatocellular carcinoma tumorigenicity by inhibiting H3 histone lactylation at H3K9la and H3K14la sites[J]. Phytomedicine, 2023, 118:154940. DOI: 10.1016/j.phymed.2023.154940.
|
[27] |
YIN X J, LI M, WANG Y Z, et al. Herbal medicine formula Huazhuo Tiaozhi Granule ameliorates dyslipidaemia via regulating histone lactylation and miR-155-5p biogenesis[J]. Clin Epigenetics, 2023, 15(1):175. DOI: 10.1186/s13148-023-01573-y.
|
[105] |
|
[106] |
WANG P W, XIE D X, XIAO T, et al. H3K18 lactylation promotes the progression of arsenite-related idiopathic pulmonary fibrosis via YTHDF1/m6A/NREP[J]. J Hazard Mater, 2024, 461:132582. DOI: 10.1016/j.jhazmat.2023.132582.
|
[107] |
ZHANG H M, ZHOU Y T, WEN D D, et al. Noncoding RNAs:master regulator of fibroblast to myofibroblast transition in fibrosis[J]. Int J Mol Sci, 2023, 24(2):1801. DOI: 10.3390/ijms24021801.
|
[108] |
|
[109] |
MICHAELOUDES C, BHAVSAR P K, MUMBY S, et al. Role of metabolic reprogramming in pulmonary innate immunity and its impact on lung diseases[J]. J Innate Immun, 2020, 12(1):31-46. DOI: 10.1159/000504344.
|
[110] |
STAHL E C, HASCHAK M J, POPOVIC B, et al. Macrophages in the aging liver and age-related liver disease[J]. Front Immunol, 2018, 9:2795. DOI: 10.3389/fimmu.2018.02795.
|
[111] |
MAHROUF-YORGOV M, COLLIN DE L'HORTET A, COSSON C,et al. Increased susceptibility to liver fibrosis with age is correlated with an altered inflammatory response[J]. Rejuvenation Res, 2011, 14(4):353-363. DOI: 10.1089/rej.2010.1146.
|
[112] |
ZHANG T T, WANG C, SONG A N, et al. Water extract of earthworms mitigates mouse liver fibrosis by potentiating hepatic LKB1/Nrf2 axis to inhibit HSC activation and hepatocyte death[J]. J Ethnopharmacol, 2024, 321:117495. DOI: 10.1016/j.jep.2023.117495.
|
[113] |
IWAISAKO K, BRENNER D A, KISSELEVA T. What's new in liver fibrosis? The origin of myofibroblasts in liver fibrosis[J]. J Gastro And Hepatol, 2012, 27(s2):65-68. DOI: 10.1111/j.1440-1746.2011.07002.x.
|
[114] |
|
[115] |
TRIVEDI P, WANG S, FRIEDMAN S L. The power of plasticity-metabolic regulation of hepatic stellate cells[J]. Cell Metab, 2021, 33(2):242-257. DOI: 10.1016/j.cmet.2020.10.026.
|
[28] |
SUN Y N, CHEN Y C, PENG T. A bioorthogonal chemical reporter for the detection and identification of protein lactylation[J]. Chem Sci, 2022, 13(20):6019-6027. DOI: 10.1039/D2SC00918H.
|
[29] |
LI J Y, ZENG G D, ZHANG Z Z, et al. Urban airborne PM2.5 induces pulmonary fibrosis through triggering glycolysis and subsequent modification of histone lactylation in macrophages[J]. Ecotoxicol Environ Saf, 2024, 273:116162. DOI: 10.1016/j.ecoenv.2024.116162.
|
[30] |
LIN X L, LEI Y, PAN M Z, et al. Augmentation of scleral glycolysis promotes myopia through histone lactylation[J]. Cell Metab, 2024, 36(3):511-525.e7. DOI: 10.1016/j.cmet.2023.12.023.
|
[31] |
LI X, YANG N N, WU Y, et al. Hypoxia regulates fibrosis-related genes via histone lactylation in the placentas of patients with preeclampsia[J]. J Hypertens, 2022, 40(6):1189-1198. DOI: 10.1097/HJH.0000000000003129.
|
[32] |
LEO A D, UGOLINI A, YU X Q, et al. Glucose-driven histone lactylation promotes the immunosuppressive activity of monocyte-derived macrophages in glioblastoma[J]. Immunity, 2024, 57(5):1105-1123.e8. DOI: 10.1016/j.immuni.2024.04.006.
|
[33] |
MA W Q, JIA K N, CHENG H M, et al. Orphan nuclear receptor NR4A3 promotes vascular calcification via histone lactylation[J]. Circ Res, 2024, 134(11):1427-1447. DOI: 10.1161/CIRCRESAHA.123.323699.
|
[34] |
YU W S, KONG Q Y, JIANG S R, et al. HSPA12A maintains aerobic glycolytic homeostasis and Histone3 lactylation in cardiomyocytes to attenuate myocardial ischemia/reperfusion injury[J]. JCI Insight, 2024, 9(7):e169125. DOI: 10.1172/jci.insight.169125.
|
[35] |
ZHOU Y Q, YAN J X, HUANG H, et al. The m6A reader IGF2BP2 regulates glycolytic metabolism and mediates histone lactylation to enhance hepatic stellate cell activation and liver fibrosis[J]. Cell Death Dis, 2024, 15(3):189. DOI: 10.1038/s41419-024-06509-9.
|
[36] |
YANG H, YANG S F, HE J X, et al. Glucose transporter 3(GLUT3)promotes lactylation modifications by regulating lactate dehydrogenase A(LDHA)in gastric cancer[J]. Cancer Cell Int, 2023, 23(1):303. DOI: 10.1186/s12935-023-03162-8.
|
[37] |
HUANG Z W, ZHANG X N, ZHANG L, et al. STAT5 promotes PD-L1 expression by facilitating histone lactylation to drive immunosuppression in acute myeloid leukemia[J]. Signal Transduct Target Ther, 2023, 8(1):391. DOI: 10.1038/s41392-023-01605-2.
|
[38] |
HU X L, HUANG X W, YANG Y, et al. Dux activates metabolism-lactylation-MET network during early iPSC reprogramming with Brg1 as the histone lactylation reader[J]. Nucleic Acids Res, 2024, 52(10):5529-5548. DOI: 10.1093/nar/gkae183.
|
[39] |
GAO M M, ZHANG N, LIANG W X. Systematic analysis of lysine lactylation in the plant fungal pathogen Botrytis cinerea[J]. Front Microbiol, 2020, 11:594743. DOI: 10.3389/fmicb.2020.594743.
|
[40] |
ZHANG N W, JIANG N, YU L Y, et al. Protein lactylation critically regulates energy metabolism in the protozoan parasite Trypanosoma brucei[J]. Front Cell Dev Biol, 2021, 9:719720. DOI: 10.3389/fcell.2021.719720.
|
[41] |
ZHAO W, YU H L, LIU X N, et al. Systematic identification of the lysine lactylation in the protozoan parasite Toxoplasma gondii[J]. Parasit Vectors, 2022, 15(1):180. DOI: 10.1186/s13071-022-05315-6.
|
[42] |
CHEN Y P, WU J H, ZHAI L H, et al. Metabolic regulation of homologous recombination repair by MRE11 lactylation[J]. Cell, 2024, 187(2):294-311.e21. DOI: 10.1016/j.cell.2023.11.022.
|
[43] |
YANG K, FAN M, WANG X H, et al. Lactate promotes macrophage HMGB1 lactylation,acetylation,and exosomal release in polymicrobial sepsis[J]. Cell Death Differ, 2022, 29(1):133-146. DOI: 10.1038/s41418-021-00841-9.
|
[44] |
ZHANG Y Y, HUANG Z Q, HAN W T, et al. Glutamine suppresses senescence and promotes autophagy through glycolysis inhibition-mediated AMPKα lactylation in intervertebral disc degeneration[J]. Commun Biol, 2024, 7(1):325. DOI: 10.1038/s42003-024-06000-3.
|
[45] |
LI Q L, ZHANG F P, WANG H, et al. NEDD4 lactylation promotes APAP induced liver injury through Caspase11 dependent non-canonical pyroptosis[J]. Int J Biol Sci, 2024, 20(4):1413-1435. DOI: 10.7150/ijbs.91284.
|
[46] |
DONG Q M, ZHANG Q Y, YANG X Q, et al. Glycolysis-stimulated esrrb lactylation promotes the self-renewal and extraembryonic endoderm stem cell differentiation of embryonic stem cells[J]. Int J Mol Sci, 2024, 25(5):2692. DOI: 10.3390/ijms25052692.
|
[47] |
GU J, ZHOU J R, CHEN Q Y, et al. Tumor metabolite lactate promotes tumorigenesis by modulating MOESIN lactylation and enhancing TGF-β signaling in regulatory T cells[J]. Cell Rep, 2022, 40(3):111122. DOI: 10.1016/j.celrep.2022.111122.
|
[48] |
YU J, CHAI P W, XIE M Y, et al. Histone lactylation drives oncogenesis by facilitating m6A reader protein YTHDF2 expression in ocular melanoma[J]. Genome Biol, 2021, 22(1):85. DOI: 10.1186/s13059-021-02308-z.
|
[49] |
FONDY T P, KAPLAN N O. Structural and functional properties of the H and M subunits of lactic dehydrogenases[J]. Ann N Y Acad Sci, 1965, 119(3):888-904. DOI: 10.1111/j.1749-6632.1965.tb47450.x.
|
[50] |
MARKERT C L, SHAKLEE J B, WHITT G S. Evolution of a gene. Multiple genes for LDH isozymes provide a model of the evolution of gene structure,function and regulation[J]. Science, 1975, 189(4197):102-114. DOI: 10.1126/science.1138367.
|
[51] |
YANG J F, LUO L, ZHAO C Y, et al. A positive feedback loop between inactive VHL-triggered histone lactylation and PDGFRβ signaling drives clear cell renal cell carcinoma progression[J]. Int J Biol Sci, 2022, 18(8):3470-3483. DOI: 10.7150/ijbs.73398.
|
[52] |
XU H W, WU M Y, MA X M, et al. Function and mechanism of novel histone posttranslational modifications in health and disease[J]. Biomed Res Int, 2021, 2021:6635225. DOI: 10.1155/2021/6635225.
|
[53] |
CUI H C, XIE N, BANERJEE S, et al. Lung myofibroblasts promote macrophage profibrotic activity through lactate-induced histone lactylation[J]. Am J Respir Cell Mol Biol, 2021, 64(1):115-125. DOI: 10.1165/rcmb.2020-0360OC.
|
[54] |
JU J Y, ZHANG H, LIN M B, et al. The alanyl-tRNA synthetase AARS1 moonlights as a lactyltransferase to promote YAP signaling in gastric cancer[J]. J Clin Invest, 2024, 134(10):e174587. DOI: 10.1172/JCI174587.
|
[55] |
DONG H Y, ZHANG J J, ZHANG H, et al. YiaC and CobB regulate lysine lactylation in Escherichia coli[J]. Nat Commun, 2022, 13(1):6628. DOI: 10.1038/s41467-022-34399-y.
|
[56] |
NIU Z P, CHEN C, WANG S Y, et al. HBO1 catalyzes lysine lactylation and mediates histone H3K9la to regulate gene transcription[J]. Nat Commun, 2024, 15(1):3561. DOI: 10.1038/s41467-024-47900-6.
|
[57] |
XIE B T, ZHANG M D, LI J, et al. KAT8-catalyzed lactylation promotes eEF1A2-mediated protein synthesis and colorectal carcinogenesis[J]. Proc Natl Acad Sci U S A, 2024, 121(8):e2314128121. DOI: 10.1073/pnas.2314128121.
|
[58] |
MAO Y Z, ZHANG J J, ZHOU Q, et al. Hypoxia induces mitochondrial protein lactylation to limit oxidative phosphorylation[J]. Cell Res, 2024, 34(1):13-30. DOI: 10.1038/s41422-023-00864-6.
|
[59] |
ZONG Z, XIE F, WANG S, et al. Alanyl-tRNA synthetase,AARS1,is a lactate sensor and lactyltransferase that lactylates p53 and contributes to tumorigenesis[J]. Cell, 2024, 187(10):2375-2392.e33. DOI: 10.1016/j.cell.2024.04.002.
|
[60] |
MORENO-YRUELA C, ZHANG D, WEI W, et al. Class I histone deacetylases(HDAC1-3)are histone lysine delactylases[J]. Sci Adv, 2022, 8(3):eabi6696. DOI: 10.1126/sciadv.abi6696.
|
[61] |
|
[62] |
TIAN Q, ZHOU L Q. Lactate activates germline and cleavage embryo genes in mouse embryonic stem cells[J]. Cells, 2022, 11(3):548. DOI: 10.3390/cells11030548.
|
[63] |
HAGIHARA H, SHOJI H, OTABI H, et al. Protein lactylation induced by neural excitation[J]. Cell Rep, 2021, 37(2):109820. DOI: 10.1016/j.celrep.2021.109820.
|
[64] |
FU Y D, YU J, LI F, et al. Oncometabolites drive tumorigenesis by enhancing protein acylation:from chromosomal remodelling to nonhistone modification[J]. J Exp Clin Cancer Res, 2022, 41(1):144. DOI: 10.1186/s13046-022-02338-w.
|
[65] |
MILLER M B, HUANG A Y, KIM J, et al. Somatic genomic changes in single Alzheimer's disease neurons[J]. Nature, 2022, 604(7907):714-722. DOI: 10.1038/s41586-022-04640-1.
|
[66] |
MAWUENYEGA K G, SIGURDSON W, OVOD V, et al. Decreased clearance of CNS beta-amyloid in Alzheimer's disease[J]. Science, 2010, 330(6012):1774. DOI: 10.1126/science.1197623.
|
[67] |
FAGAN A M, HENSON R L, LI Y, et al. Comparison of CSF biomarkers in Down syndrome and autosomal dominant Alzheimer's disease:a cross-sectional study[J]. Lancet Neurol, 2021, 20(8):615-626. DOI: 10.1016/S1474-4422(21)00139-3.
|
[68] |
TEJERA D, MERCAN D, SANCHEZ-CARO J M, et al. Systemic inflammation impairs microglial Aβ clearance through NLRP3 inflammasome[J]. EMBO J, 2019, 38(17):e101064. DOI: 10.15252/embj.2018101064.
|