The Effectiveness Evaluation of Artificial Intelligence Assisted Diagnosis System for Chest Diseases in the Diagnosis of General Practitioners in Primary Healthcare Institutions
1. School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China 2. Department of General Practice, Donghuashi Community Health Service Center, Dongcheng District, Beijing 100022, China
FANG Junze,GAO Huaiting,XING Suxia, et al. The Effectiveness Evaluation of Artificial Intelligence Assisted Diagnosis System for Chest Diseases in the Diagnosis of General Practitioners in Primary Healthcare Institutions[J]. Chinese General Practice, 2025, 28(31): 3948-3953. DOI: 10.12114/j.issn.1007-9572.2024.0423.
方俊泽,高怀婷,邢素霞等. 人工智能胸部疾病辅助诊断系统在基层医疗卫生机构全科医生诊断中的实效性评估[J]. 中国全科医学, 2025, 28(31): 3948-3953. DOI: 10.12114/j.issn.1007-9572.2024.0423.
PESAPANEF, CODARIM, SARDANELLIF. Artificial intelligence in medical imaging:threat or opportunity? Radiologists again at the forefront of innovation in medicine[J]. Eur Radiol Exp,2018,2(1):35. DOI:10.1186/s41747-018-0061-6.
[3]
SHINH C, ROBERTSK, LUL, et al. Learning to read chest X-rays:recurrent neural cascade model for automated image annotation[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. (CVPR). June 27-30,2016,Las Vegas,NV,USA. IEEE,2016:2497-2506. DOI:10.1109/CVPR.2016.274.
[4]
JINGB Y, XIEP T, XINGE. On the automatic generation of medical imaging reports[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers). Melbourne,Australia. Stroudsburg,PA,USAACL,2018:2577-2586. DOI:10.18653/v1/P18-1240.
[5]
GALEW, OAKDEN-RAYNERL, CARNEIROG, et al. Producing radiologist-quality reports for interpretable deep learning[C]//The 16th IEEE International Symposium on Biomedical Imaging. Venice,Italy:IEEE:2019,1275-1279.
KISILEVP, SASONE, BARKANE, et al. Medical image description using multi-task-loss CNN[C]//Deep Learning and Data Labeling for Medical Applications. Cham:Springer International Publishing,2016:121-129.
[11]
WANGZ Y, HANH W, WANGL, et al. Automated radiographic report generation purely on transformer:a multicrite ria supervised approach[J].IEEE Trans Med Imaging,2022,41(10):2803-2813. DOI:10.1109/TMI.2022.3171661.
[12]
ZENGX H, LIAOT X, XUL M, et al. AERMNet:Attention-enhanced relational memory network for medical image report generation[J]. Comput Methods Programs Biomed,2024,244:107979. DOI:10.1016/j.cmpb.2023.107979.
[13]
WANGZ Y, ZHOUL P, WANGL, et al.A self-boosting framework for automated radiographic report generation[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). June 20-25, 2021. Nashville,TN,USA. IEEE,2021:2433-2442. DOI:10.1109/CVPR46437.2021.00246.
[14]
ALLENM R, WEBBS, MANDVIA, et al. Navigating the doctor-patient-AI relationship - a mixed-methods study of physician attitudes toward artificial intelligence in primary care[J]. BMC Prim Care,2024,25(1):42.
GORDONE R, TRAGERM H, KONTOSD, et al. Ethical considerations for artificial intelligence in dermatology:a scoping review[J]. Br J Dermatol,2024,190(6):789-797.
[19]
BUCKC, DOCTORE, HENNRICHJ, et al. General practitioners' attitudes toward artificial intelligence-enabled systems:interview study[J]. J Med Internet Res,2022,24(1):e28916.