[1] |
GUO X Y, YIN X Z, LIU Z J,et al. Non-alcoholic fatty liver disease(NAFLD)pathogenesis and natural products for prevention and treatment[J]. Int J Mol Sci, 2022, 23(24):15489. DOI: 10.3390/ijms232415489.
|
[2] |
ESLAM M, NEWSOME P N, SARIN S K,et al. A new definition for metabolic dysfunction-associated fatty liver disease:an international expert consensus statement[J]. J Hepatol, 2020, 73(1):202-209. DOI: 10.1016/j.jhep.2020.03.039.
|
[3] |
RAZA S, RAJAK S, UPADHYAY A,et al. Current treatment paradigms and emerging therapies for NAFLD/NASH[J]. Front Biosci, 2021, 26(2):206-237. DOI: 10.2741/4892.
|
[4] |
WANG C, MA C, GONG L H,et al. Macrophage polarization and its role in liver disease[J]. Front Immunol, 2021, 12:803037. DOI: 10.3389/fimmu.2021.803037.
|
[5] |
PIPITONE R M, CICCIOLI C, INFANTINO G,et al. MAFLD:a multisystem disease[J]. Ther Adv Endocrinol Metab, 2023, 14:20420188221145549. DOI: 10.1177/20420188221145549.
|
[6] |
RONG L, ZOU J Y, RAN W,et al. Advancements in the treatment of non-alcoholic fatty liver disease(NAFLD)[J]. Front Endocrinol, 2023, 13:1087260. DOI: 10.3389/fendo.2022.1087260.
|
[7] |
VANCELLS LUJAN P, VIÑAS ESMEL E, SACANELLA MESEGUER E. Overview of non-alcoholic fatty liver disease(NAFLD)and the role of sugary food consumption and other dietary components in its development[J]. Nutrients, 2021, 13(5):1442. DOI: 10.3390/nu13051442.
|
[8] |
BOUTARI C, LEFKOS P, ATHYROS V G,et al. Nonalcoholic fatty liver disease vs. nonalcoholic steatohepatitis:pathological and clinical implications[J]. Curr Vasc Pharmacol, 2018, 16(3):214-218. DOI: 10.2174/1570161115666170621075157.
|
[9] |
GEIER A, TINIAKOS D, DENK H,et al. From the origin of NASH to the future of metabolic fatty liver disease[J]. Gut, 2021, 70(8):1570-1579. DOI: 10.1136/gutjnl-2020-323202.
|
[10] |
BILITY M T, NIO K, LI F,et al. Chronic hepatitis C infection-induced liver fibrogenesis is associated with M2 macrophage activation[J]. Sci Rep, 2016, 6:39520. DOI: 10.1038/srep39520.
|
[11] |
SCHUSTER S, CABRERA D, ARRESE M,et al. Triggering and resolution of inflammation in NASH[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(6):349-364. DOI: 10.1038/s41575-018-0009-6.
|
[12] |
INDIRA CHANDRAN V, WERNBERG C W, LAURIDSEN M M,et al. Circulating TREM2 as a noninvasive diagnostic biomarker for NASH in patients with elevated liver stiffness[J]. Hepatology, 2023, 77(2):558-572. DOI: 10.1002/hep.32620.
|
[13] |
WEN Y K, LAMBRECHT J, JU C,et al. Hepatic macrophages in liver homeostasis and diseases-diversity,plasticity and therapeutic opportunities[J]. Cell Mol Immunol, 2021, 18(1):45-56. DOI: 10.1038/s41423-020-00558-8.
|
[14] |
MACPARLAND S A, LIU J C, MA X Z,et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations[J]. Nat Commun, 2018, 9(1):4383. DOI: 10.1038/s41467-018-06318-7.
|
[15] |
KRENKEL O, TACKE F. Liver macrophages in tissue homeostasis and disease[J]. Nat Rev Immunol, 2017, 17(5):306-321. DOI: 10.1038/nri.2017.11.
|
[16] |
ROSKOSKI R Jr. Janus kinase(JAK)inhibitors in the treatment of neoplastic and inflammatory disorders[J]. Pharmacol Res, 2022, 183:106362. DOI: 10.1016/j.phrs.2022.106362.
|
[17] |
ORTEGA M T, XIE L L, MORA S,et al. Evaluation of macrophage plasticity in brown and white adipose tissue[J]. Cell Immunol, 2011, 271(1):124-133. DOI: 10.1016/j.cellimm.2011.06.012.
|
[18] |
LOPEZ B G, TSAI M S, BARATTA J L,et al. Characterization of Kupffer cells in livers of developing mice[J]. Comp Hepatol, 2011, 10(1):2. DOI: 10.1186/1476-5926-10-2.
|
[19] |
NAITO M, HASEGAWA G, EBE Y,et al. Differentiation and function of kupffer cells[J]. Med Electron Microsc, 2004, 37(1):16-28. DOI: 10.1007/s00795-003-0228-x.
|
[20] |
DOU L, SHI X M, HE X S,et al. Macrophage phenotype and function in liver disorder[J]. Front Immunol, 2020, 10:3112. DOI: 10.3389/fimmu.2019.03112.
|
[21] |
HERRADA A A, OLATE-BRIONES A, ROJAS A,et al. Adipose tissue macrophages as a therapeutic target in obesity-associated diseases[J]. Obes Rev, 2021, 22(6):e13200. DOI: 10.1111/obr.13200.
|
[22] |
CHAN M M, DAEMEN S, BEALS J W,et al. Steatosis drives monocyte-derived macrophage accumulation in human metabolic dysfunction-associated fatty liver disease[J]. JHEP Rep, 2023, 5(11):100877. DOI: 10.1016/j.jhepr.2023.100877.
|
[23] |
WANG H, MEHAL W, NAGY L E,et al. Immunological mechanisms and therapeutic targets of fatty liver diseases[J]. Cell Mol Immunol, 2021, 18(1):73-91. DOI: 10.1038/s41423-020-00579-3.
|
[24] |
LI X R, REN Y K, CHANG K W,et al. Adipose tissue macrophages as potential targets for obesity and metabolic diseases[J]. Front Immunol, 2023, 14:1153915. DOI: 10.3389/fimmu.2023.1153915.
|
[25] |
DAEMEN S, GAINULLINA A, KALUGOTLA G,et al. Dynamic shifts in the composition of resident and recruited macrophages influence tissue remodeling in NASH[J]. Cell Rep, 2022, 41(7):111660. DOI: 10.1016/j.celrep.2022.111660.
|
[26] |
SUBRAMANIAN P, CHAVAKIS T. The complex function of macrophages and their subpopulations in metabolic injury associated fatty liver disease[J]. J Physiol, 2023, 601(7):1159-1171. DOI: 10.1113/JP283820.
|
[27] |
PENG Y, ZHOU M X, YANG H,et al. Regulatory mechanism of M1/M2 macrophage polarization in the development of autoimmune diseases[J]. Mediators Inflamm, 2023, 2023:8821610. DOI: 10.1155/2023/8821610.
|
[28] |
VONDERLIN J, CHAVAKIS T, SIEWEKE M,et al. The multifaceted roles of macrophages in NAFLD pathogenesis[J]. Cell Mol Gastroenterol Hepatol, 2023, 15(6):1311-1324. DOI: 10.1016/j.jcmgh.2023.03.002.
|
[29] |
|
[30] |
VAN DER HEIDE D, WEISKIRCHEN R, BANSAL R. Therapeutic targeting of hepatic macrophages for the treatment of liver diseases[J]. Front Immunol, 2019, 10:2852. DOI: 10.3389/fimmu.2019.02852.
|
[31] |
ADOLPH T E, GRANDER C, GRABHERR F,et al. Adipokines and non-alcoholic fatty liver disease:multiple interactions[J]. Int J Mol Sci, 2017, 18(8):1649. DOI: 10.3390/ijms18081649.
|
[32] |
黄倩,王卓媛,安梓铭,等. NLRP3基因敲减对高脂高糖饮食诱导的非酒精性脂肪性肝炎小鼠模型的影响[J]. 临床肝胆病杂志, 2024, 40(5):952-960. DOI: 10.12449/JCH240514.
|
[33] |
NI Y H, ZHUGE F, NI L Y,et al. CX3CL1/CX3CR1 interaction protects against lipotoxicity-induced nonalcoholic steatohepatitis by regulating macrophage migration and M1/M2 status[J]. Metabolism, 2022, 136:155272. DOI: 10.1016/j.metabol.2022.155272.
|
[34] |
XU L, CHEN Y P, NAGASHIMADA M,et al. CC chemokine ligand 3 deficiency ameliorates diet-induced steatohepatitis by regulating liver macrophage recruitment and M1/M2 status in mice[J]. Metabolism, 2021, 125:154914. DOI: 10.1016/j.metabol.2021.154914.
|
[35] |
ZHANG X, FAN L N, WU J F,et al. Macrophage p38α promotes nutritional steatohepatitis through M1 polarization[J]. J Hepatol, 2019, 71(1):163-174. DOI: 10.1016/j.jhep.2019.03.014.
|
[36] |
PATOURAUX S, ROUSSEAU D, BONNAFOUS S,et al. CD44 is a key player in non-alcoholic steatohepatitis[J]. J Hepatol, 2017, 67(2):328-338. DOI: 10.1016/j.jhep.2017.03.003.
|
[37] |
TANG T F, SUI Y H, LIAN M,et al. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death[J]. PLoS One, 2013, 8(12):e81949. DOI: 10.1371/journal.pone.0081949.
|
[38] |
XU F, GUO M M, HUANG W,et al. Annexin A5 regulates hepatic macrophage polarization via directly targeting PKM2 and ameliorates NASH[J]. Redox Biol, 2020, 36:101634. DOI: 10.1016/j.redox.2020.101634.
|
[39] |
LEE S, USMAN T O, YAMAUCHI J,et al. Myeloid FoxO1 depletion attenuates hepatic inflammation and prevents nonalcoholic steatohepatitis[J]. J Clin Invest, 2022, 132(14):e154333. DOI: 10.1172/JCI154333.
|
[40] |
KAZANKOV K, JØRGENSEN S M D, THOMSEN K L,et al. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(3):145-159. DOI: 10.1038/s41575-018-0082-x.
|
[41] |
CAI B S, DONGIOVANNI P, COREY K E,et al. Macrophage MerTK promotes liver fibrosis in nonalcoholic steatohepatitis[J]. Cell Metab, 2020, 31(2):406-421.e7. DOI: 10.1016/j.cmet.2019.11.013.
|
[42] |
LI L, WEI W, LI Z Z,et al. The spleen promotes the secretion of CCL2 and supports an M1 dominant phenotype in hepatic macrophages during liver fibrosis[J]. Cell Physiol Biochem, 2018, 51(2):557-574. DOI: 10.1159/000495276.
|
[43] |
IMAMURA M, OGAWA T, SASAGURI Y,et al. Suppression of macrophage infiltration inhibits activation of hepatic stellate cells and liver fibrogenesis in rats[J]. Gastroenterology, 2005, 128(1):138-146. DOI: 10.1053/j.gastro.2004.10.005.
|
[44] |
SONG K, KWON H, HAN C,et al. Yes-associated protein in kupffer cells enhances the production of proinflammatory cytokines and promotes the development of nonalcoholic steatohepatitis[J]. Hepatology, 2020, 72(1):72-87. DOI: 10.1002/hep.30990.
|
[45] |
ALHARTHI J, LATCHOUMANIN O, GEORGE J,et al. Macrophages in metabolic associated fatty liver disease[J]. World J Gastroenterol, 2020, 26(16):1861-1878. DOI: 10.3748/wjg.v26.i16.1861.
|
[46] |
|
[47] |
REMMERIE A, MARTENS L, THONÉ T,et al. Osteopontin expression identifies a subset of recruited macrophages distinct from kupffer cells in the fatty liver[J]. Immunity, 2020, 53(3):641-657.e14. DOI: 10.1016/j.immuni.2020.08.004.
|
[48] |
WANG Q, ZHOU H M, BU Q F,et al. Role of XBP1 in regulating the progression of non-alcoholic steatohepatitis[J]. J Hepatol, 2022, 77(2):312-325. DOI: 10.1016/j.jhep.2022.02.031.
|
[49] |
MRIDHA A R, WREE A, ROBERTSON A A B,et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice[J]. J Hepatol, 2017, 66(5):1037-1046. DOI: 10.1016/j.jhep.2017.01.022.
|
[50] |
郭丽娜.代谢相关性脂肪性肝病中NLRP3炎性小体激活致肝细胞焦亡启动的相关机制研究[D]. 沈阳:中国医科大学,2022.
|
[51] |
CHANG L, GAO J D, YU Y P,et al. MMP10 alleviates non-alcoholic steatohepatitis by regulating macrophage M2 polarization[J]. Int Immunopharmacol, 2023, 124(Pt B):111045. DOI: 10.1016/j.intimp.2023.111045.
|
[52] |
LV S M, WANG J H, LI L. Extracellular vesicular lncRNA FAL1 promotes hepatocellular carcinoma cell proliferation and invasion by inducing macrophage M2 polarization[J]. J Physiol Biochem, 2023, 79(3):669-682. DOI: 10.1007/s13105-022-00922-4.
|
[53] |
CAO Y, MAI W L, LI R,et al. Macrophages evoke autophagy of hepatic stellate cells to promote liver fibrosis in NAFLD mice via the PGE2/EP4 pathway[J]. Cell Mol Life Sci, 2022, 79(6):303. DOI: 10.1007/s00018-022-04319-w.
|
[54] |
ZHAO S L, MI Y S, GUAN B J,et al. Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer[J]. J Hematol Oncol, 2020, 13(1):156. DOI: 10.1186/s13045-020-00991-2.
|
[55] |
XUE J C, XIAO T, WEI S F,et al. MiR-21-regulated M2 polarization of macrophage is involved in arsenicosis-induced hepatic fibrosis through the activation of hepatic stellate cells[J]. J Cell Physiol, 2021, 236(8):6025-6041. DOI: 10.1002/jcp.30288.
|
[56] |
BAE S H, KIM J H, PARK T H,et al. BMS794833 inhibits macrophage efferocytosis by directly binding to MERTK and inhibiting its activity[J]. Exp Mol Med, 2022, 54(9):1450-1460. DOI: 10.1038/s12276-022-00840-x.
|
[57] |
WEI Y T, WANG X R, YAN C G,et al. Thymosin α-1 reverses M2 polarization of tumor-associated macrophages during efferocytosis[J]. Cancer Res, 2022, 82(10):1991-2002. DOI: 10.1158/0008-5472.CAN-21-4260.
|
[58] |
UCHIDA M, HORII N, HASEGAWA N,et al. Gene expression profiles for macrophage in tissues in response to different exercise training protocols in senescence mice[J]. Front Sports Act Living, 2019, 1:50. DOI: 10.3389/fspor.2019.00050.
|
[59] |
LI Z Y, WANG Y, TIAN Z,et al. Exercise-mediated macrophage polarization modulates the targeted therapeutic effect of NAFLD:a review[J]. Phys Act Nutr, 2023, 27(3):10-16. DOI: 10.20463/pan.2023.0023.
|
[60] |
YAKEU G, BUTCHER L, ISA S,et al. Low-intensity exercise enhances expression of markers of alternative activation in circulating leukocytes:roles of PPARγ and Th2 cytokines[J]. Atherosclerosis, 2010, 212(2):668-673. DOI: 10.1016/j.atherosclerosis.2010.07.002.
|
[61] |
SILVEIRA L S, BATATINHA H A P, CASTOLDI A,et al. Exercise rescues the immune response fine-tuned impaired by peroxisome proliferator-activated receptors γ deletion in macrophages[J]. J Cell Physiol, 2019, 234(4):5241-5251. DOI: 10.1002/jcp.27333.
|
[62] |
|
[63] |
ISPIRLIDIS I, FATOUROS I G, JAMURTAS A Z,et al. Time-course of changes in inflammatory and performance responses following a soccer game[J]. Clin J Sport Med, 2008, 18(5):423-431. DOI: 10.1097/JSM.0b013e3181818e0b.
|
[64] |
MCFADDEN B A, VINCENTY C S, CHANDLER A J,et al. Effects of fucoidan supplementation on inflammatory and immune response after high-intensity exercise[J]. J Int Soc Sports Nutr, 2023, 20(1):2224751. DOI: 10.1080/15502783.2023.2224751.
|
[65] |
徐文杰,谢旭东,何瑞波,等. 不同运动方式对大鼠非酒精性脂肪性肝病的疗效与机制研究[J]. 环境与职业医学,2023,40(12):1395-1402.
|
[66] |
SHANAKI M, KHOSRAVI M, KHOSHDOONI-FARAHANI A,et al. High-intensity interval training reversed high-fat diet-induced M1-macrophage polarization in rat adipose tissue via inhibition of NOTCH signaling[J]. J Inflamm Res, 2020, 13:165-174. DOI: 10.2147/JIR.S237049.
|
[67] |
DE SOUZA D C, MATOS V A F, DOS SANTOS V O A,et al. Effects of high-intensity interval and moderate-intensity continuous exercise on inflammatory,leptin,IgA,and lipid peroxidation responses in obese males[J]. Front Physiol, 2018, 9:567. DOI: 10.3389/fphys.2018.00567.
|
[68] |
ZWETSLOOT K A, JOHN C S, LAWRENCE M M,et al. High-intensity interval training induces a modest systemic inflammatory response in active,young men[J]. J Inflamm Res, 2014, 7:9-17. DOI: 10.2147/JIR.S54721.
|
[69] |
BABU A F, CSADER S, MÄNNISTÖ V,et al. Effects of exercise on NAFLD using non-targeted metabolomics in adipose tissue,plasma,urine,and stool[J]. Sci Rep, 2022, 12(1):6485. DOI: 10.1038/s41598-022-10481-9.
|
[70] |
CHO J, KIM S, LEE S,et al. Effect of training intensity on nonalcoholic fatty liver disease[J]. Med Sci Sports Exerc, 2015, 47(8):1624-1634. DOI: 10.1249/MSS.0000000000000595.
|
[71] |
LINDEN M A, FLETCHER J A, MORRIS E M,et al. Treating NAFLD in OLETF rats with vigorous-intensity interval exercise training[J]. Med Sci Sports Exerc, 2015, 47(3):556-567. DOI: 10.1249/MSS.0000000000000430.
|
[72] |
ZAI W J, CHEN W, LIU H R,et al. Therapeutic opportunities of IL-22 in non-alcoholic fatty liver disease:from molecular mechanisms to clinical applications[J]. Biomedicines, 2021, 9(12):1912. DOI: 10.3390/biomedicines9121912.
|
[73] |
RAMOS J S, DALLECK L C, STENNETT R C,et al. Effect of different volumes of interval training and continuous exercise on interleukin-22 in adults with metabolic syndrome:a randomized trial[J]. Diabetes Metab Syndr Obes, 2020, 13:2443-2453. DOI: 10.2147/DMSO.S251567.
|
[74] |
FREDRICKSON G, BARROW F, DIETSCHE K,et al. Exercise of high intensity ameliorates hepatic inflammation and the progression of NASH[J]. Mol Metab, 2021, 53:101270. DOI: 10.1016/j.molmet.2021.101270.
|
[75] |
LUO Y F, CHEN Q F, ZOU J R,et al. Chronic intermittent hypoxia exposure alternative to exercise alleviates high-fat-diet-induced obesity and fatty liver[J]. Int J Mol Sci, 2022, 23(9):5209. DOI: 10.3390/ijms23095209.
|
[76] |
DINIZ T A, DE LIMA JUNIOR E A, TEIXEIRA A A,et al. Aerobic training improves NAFLD markers and insulin resistance through AMPK-PPAR-α signaling in obese mice[J]. Life Sci, 2021, 266:118868. DOI: 10.1016/j.lfs.2020.118868.
|
[77] |
HASHIDA R, KAWAGUCHI T, BEKKI M,et al. Aerobic vs. resistance exercise in non-alcoholic fatty liver disease:a systematic review[J]. J Hepatol, 2017, 66(1):142-152. DOI: 10.1016/j.jhep.2016.08.023.
|
[78] |
GAO Y, ZHANG W, ZENG L Q,et al. Exercise and dietary intervention ameliorate high-fat diet-induced NAFLD and liver aging by inducing lipophagy[J]. Redox Biol, 2020, 36:101635. DOI: 10.1016/j.redox.2020.101635.
|
[79] |
LI H, DUN Y S, ZHANG W L,et al. Exercise improves lipid droplet metabolism disorder through activation of AMPK-mediated lipophagy in NAFLD[J]. Life Sci, 2021, 273:119314. DOI: 10.1016/j.lfs.2021.119314.
|
[80] |
EZPELETA M, GABEL K, CIENFUEGOS S,et al. Effect of alternate day fasting combined with aerobic exercise on non-alcoholic fatty liver disease:a randomized controlled trial[J]. Cell Metab, 2023, 35(1):56-70.e3. DOI: 10.1016/j.cmet.2022.12.001.
|
[81] |
NGUYEN T H, WARDELL R, CHITTURI S,et al. When the liver gets stiff,the tough get moving[J]. J Gastroenterol Hepatol, 2020, 35(6):953-959. DOI: 10.1111/jgh.14963.
|
[82] |
O'GORMAN P, NAIMIMOHASSES S, MONAGHAN A,et al. Improvement in histological endpoints of MAFLD following a 12-week aerobic exercise intervention[J]. Aliment Pharmacol Ther, 2020, 52(8):1387-1398. DOI: 10.1111/apt.15989.
|