[1] |
|
[2] |
ALEXANDER Y, OSTO E, SCHMIDT-TRUCKSÄSS A, et al. Endothelial function in cardiovascular medicine:a consensus paper of the European society of cardiology working groups on atherosclerosis and vascular biology,aorta and peripheral vascular diseases,coronary pathophysiology and microcirculation,and thrombosis[J]. Cardiovasc Res, 2021, 117(1):29-42. DOI: 10.1093/cvr/cvaa085.
|
[3] |
EELEN G, DE ZEEUW P, SIMONS M, et al. Endothelial cell metabolism in normal and diseased vasculature[J]. Circ Res, 2015, 116(7):1231-1244. DOI: 10.1161/CIRCRESAHA.116.302855.
|
[4] |
FITZGERALD G, SORO-ARNAIZ I, DE BOCK K. The Warburg effect in endothelial cells and its potential as an anti-angiogenic target in cancer[J]. Front Cell Dev Biol, 2018, 6:100. DOI: 10.3389/fcell.2018.00100.
|
[5] |
BONACINA F, DA DALT L, CATAPANO A L, et al. Metabolic adaptations of cells at the vascular-immune interface during atherosclerosis[J]. Mol Aspects Med, 2021, 77:100918. DOI: 10.1016/j.mam.2020.100918.
|
[6] |
ULLAH K, WU R X. Hypoxia-inducible factor regulates endothelial metabolism in cardiovascular disease[J]. Front Physiol, 2021, 12:670653. DOI: 10.3389/fphys.2021.670653.
|
[7] |
ABUMRAD N A, CABODEVILLA A G, SAMOVSKI D, et al. Endothelial cell receptors in tissue lipid uptake and metabolism[J]. Circ Res, 2021, 128(3):433-450. DOI: 10.1161/CIRCRESAHA.120.318003.
|
[8] |
XU S W, OFFERMANNS S. Endothelial lipid droplets drive atherosclerosis and arterial hypertension[J]. Trends Endocrinol Metab, 2024, 35(6):453-455. DOI: 10.1016/j.tem.2024.02.014.
|
[9] |
JAFFE I Z, KARUMANCHI S A. Lipid droplets in the endothelium:the missing link between metabolic syndrome and cardiovascular disease?[J]. J Clin Invest, 2024, 134(4):e176347. DOI: 10.1172/JCI176347.
|
[10] |
XIAO Q Q, LI X T, LI Y, et al. Biological drug and drug delivery-mediated immunotherapy[J]. Acta Pharm Sin B, 2021, 11(4):941-960. DOI: 10.1016/j.apsb.2020.12.018.
|
[11] |
HOHENSINNER P J, LENZ M, HAIDER P, et al. Pharmacological inhibition of fatty acid oxidation reduces atherosclerosis progression by suppression of macrophage NLRP3 inflammasome activation[J]. Biochem Pharmacol, 2021, 190:114634. DOI: 10.1016/j.bcp.2021.114634.
|
[12] |
WANG L, ZENG W J, WANG C W, et al. SUMOylation and coupling of ENOs mediated by PIAS1 contribute to maintenance of vascular homeostasis[J]. FASEB J, 2024, 38(1):e23362. DOI: 10.1096/fj.202301963R.
|
[13] |
KANG P F, DONG P. CircMETTL14(11)S upregulated METTL14 and induced CXCR4 to aggravate endothelial inflammation and atherosclerosis[J]. Int Immunopharmacol, 2024, 126:110979. DOI: 10.1016/j.intimp.2023.110979.
|
[14] |
NGUYEN D V, JIN Y J, NGUYEN T L L, et al. 3'-Sialyllactose protects against LPS-induced endothelial dysfunction by inhibiting superoxide-mediated ERK1/2/STAT1 activation and HMGB1/RAGE axis[J]. Life Sci, 2024, 338:122410. DOI: 10.1016/j.lfs.2023.122410.
|
[15] |
CAO X Y, WU V W Y, HAN Y M, et al. Role of argininosuccinate synthase 1-dependent L-arginine biosynthesis in the protective effect of endothelial sirtuin 3 against atherosclerosis[J]. Adv Sci, 2024, 11(12):e2307256. DOI: 10.1002/advs.202307256.
|
[16] |
CAO X Y, WU Y L, HONG H L, et al. Sirtuin 3 dependent and independent effects of NAD+ to suppress vascular inflammation and improve endothelial function in mice[J]. Antioxidants, 2022, 11(4):706. DOI: 10.3390/antiox11040706.
|
[17] |
JI Y, CHEN J, PANG L H, et al. The acid sphingomyelinase inhibitor amitriptyline ameliorates TNF-α-induced endothelial dysfunction[J]. Cardiovasc Drugs Ther, 2024, 38(1):43-56. DOI: 10.1007/s10557-022-07378-0.
|
[18] |
HE L, CHEN Q H, WANG L, et al. Activation of Nrf2 inhibits atherosclerosis in ApoE-/- mice through suppressing endothelial cell inflammation and lipid peroxidation[J]. Redox Biol, 2024, 74:103229. DOI: 10.1016/j.redox.2024.103229.
|
[19] |
PENG C, LI J, CHEN Y, et al. PCSK9 aggravated carotid artery steNOsis in ApoE-/- mice by promoting the expression of tissue factors in endothelial cells via the TLR4/NF-κB pathway[J]. Biochem Pharmacol, 2024, 225:116314. DOI: 10.1016/j.bcp.2024.116314.
|
[20] |
ZHANG Y, LI J J, XU R, et al. Nogo-B mediates endothelial oxidative stress and inflammation to promote coronary atherosclerosis in pressure-overloaded mouse hearts[J]. Redox Biol, 2023, 68:102944. DOI: 10.1016/j.redox.2023.102944.
|
[21] |
ZHUANG T, LIU J, CHEN X L, et al. Endothelial Foxp1 suppresses atherosclerosis via modulation of Nlrp3 inflammasome activation[J]. Circ Res, 2019, 125(6):590-605. DOI: 10.1161/CIRCRESAHA.118.314402.
|
[22] |
ANGHELACHE M, VOICU G, DELEANU M, et al. Biomimetic nanocarriers of pro-resolving lipid mediators for resolution of inflammation in atherosclerosis[J]. Adv Healthc Mater, 2024, 13(3):e2302238. DOI: 10.1002/adhm.202302238.
|
[23] |
|
[24] |
FUKAI T, USHIO-FUKAI M. Cross-talk between NADPH oxidase and mitochondria:role in ROS signaling and angiogenesis[J]. Cells, 2020, 9(8):1849. DOI: 10.3390/cells9081849.
|
[25] |
MA X T, ZHAO J, LI S Q, et al. Rab27a-dependent exosomes protect against cerebral ischemic injury by reducing endothelial oxidative stress and apoptosis[J]. CNS Neurosci Ther, 2022, 28(10):1596-1612. DOI: 10.1111/cns.13902.
|
[26] |
WANG Z C, NIU K M, WU Y J, et al. A dual Keap1 and p47phox inhibitor GinseNOside Rb1 ameliorates high glucose/ox-LDL-induced endothelial cell injury and atherosclerosis[J]. Cell Death Dis, 2022, 13(9):824. DOI: 10.1038/s41419-022-05274-x.
|
[27] |
TISCH N, RUIZ DE ALMODÓVAR C. Contribution of cell death signaling to blood vessel formation[J]. Cell Mol Life Sci, 2021, 78(7):3247-3264. DOI: 10.1007/s00018-020-03738-x.
|
[28] |
GENG T X, YAN Y, ZHANG Y, et al. CD137 signaling promotes endothelial apoptosis by inhibiting Nrf2 pathway,and upregulating NF-κB pathway[J]. Mediators Inflamm, 2020, 2020:4321912. DOI: 10.1155/2020/4321912.
|
[29] |
LIU J, YI X, TAO Y, et al. Insulin-receptor substrate 1 protects against injury in endothelial cell models of ox-LDL-induced atherosclerosis by inhibiting ER stress/oxidative stress-mediated apoptosis and activating the Akt/FoxO1 signaling pathway[J]. Int J Mol Med, 2020, 46(5):1671-1682. DOI: 10.3892/ijmm.2020.4728.
|
[30] |
ZHANG P R, YAN X C, ZHANG X Y, et al. TMEM215 prevents endothelial cell apoptosis in vessel regression by blunting BIK-regulated ER-to-mitochondrial Ca influx[J]. Circ Res, 2023, 133(9):739-757. DOI: 10.1161/CIRCRESAHA.123.322686.
|
[31] |
HU Y, XU R, HE Y, et al. Downregulation of microRNA-106a-5p alleviates ox-LDL-mediated endothelial cell injury by targeting STAT3[J]. Mol Med Rep, 2020, 22(2):783-791. DOI: 10.3892/mmr.2020.11147.
|
[32] |
LI Y, YANG N, DONG B, et al. MicroRNA-122 promotes endothelial cell apoptosis by targeting XIAP:therapeutic implication for atherosclerosis[J]. Life Sci, 2019, 232:116590. DOI: 10.1016/j.lfs.2019.116590.
|
[33] |
YU W M, LI S Q, WU H X, et al. Endothelial Nox4 dysfunction aggravates atherosclerosis by inducing endoplasmic reticulum stress and soluble epoxide hydrolase[J]. Free Radic Biol Med, 2021, 164:44-57. DOI: 10.1016/j.freeradbiomed.2020.12.450.
|
[34] |
HE B, NIE Q Q, WANG F, et al. Role of pyroptosis in atherosclerosis and its therapeutic implications[J]. J Cell Physiol, 2021, 236(10):7159-7175. DOI: 10.1002/jcp.30366.
|
[35] |
QIAN Z T, ZHAO Y L, WAN C D, et al. Pyroptosis in the initiation and progression of atherosclerosis[J]. Front Pharmacol, 2021, 12:652963. DOI: 10.3389/fphar.2021.652963.
|
[36] |
JU J, LIU Y Y, LIANG H H, et al. The role of pyroptosis in endothelial dysfunction induced by diseases[J]. Front Immunol, 2022, 13:1093985. DOI: 10.3389/fimmu.2022.1093985.
|
[37] |
LIU X H, LUO P Y, ZHANG W Y, et al. Roles of pyroptosis in atherosclerosis pathogenesis[J]. Biomed Pharmacother, 2023, 166:115369. DOI: 10.1016/j.biopha.2023.115369.
|
[38] |
XU S K, GE Y S, WANG X B, et al. Circ-USP9X interacts with EIF4A3 to promote endothelial cell pyroptosis by regulating GSDMD stability in atherosclerosis[J]. Clin Exp Hypertens, 2023, 45(1):2186319. DOI: 10.1080/10641963.2023.2186319.
|
[39] |
AN C, SUN F, LIU C, et al. IQGAP1 promotes mitochondrial damage and activation of the mtDNA sensor cGAS-STING pathway to induce endothelial cell pyroptosis leading to atherosclerosis[J]. Int Immunopharmacol, 2023, 123:110795. DOI: 10.1016/j.intimp.2023.110795.
|
[40] |
ZHANG Y, ZHU Z R, CAO Y, et al. Rnd3 suppresses endothelial cell pyroptosis in atherosclerosis through regulation of ubiquitination of TRAF6[J]. Clin Transl Med, 2023, 13(9):e1406. DOI: 10.1002/ctm2.1406.
|
[41] |
BAI B C, YANG Y Y, JI S X, et al. MicroRNA-302c-3p inhibits endothelial cell pyroptosis via directly targeting NOD-,LRR- and pyrin domain-containing protein 3 in atherosclerosis[J]. J Cell Mol Med, 2021, 25(9):4373-4386. DOI: 10.1111/jcmm.16500.
|
[42] |
GE Y S, LIU W W, YIN W, et al. Circular RNA circ_0090231 promotes atherosclerosis in vitro by enhancing NLR family pyrin domain containing 3-mediated pyroptosis of endothelial cells[J]. Bioengineered, 2021, 12(2):10837-10848. DOI: 10.1080/21655979.2021.1989260.
|
[43] |
CHEN Z Y, LI Y Y, LIU X J. Copper homeostasis and copper-induced cell death:novel targeting for intervention in the pathogenesis of vascular aging[J]. Biomed Pharmacother, 2023, 169:115839. DOI: 10.1016/j.biopha.2023.115839.
|
[44] |
ZHENG D D, LIU J, PIAO H L, et al. ROS-triggered endothelial cell death mechanisms:focus on pyroptosis,parthanatos,and ferroptosis[J]. Front Immunol, 2022, 13:1039241. DOI: 10.3389/fimmu.2022.1039241.
|
[45] |
CHEN X Y, CAI Q, LIANG R K, et al. Copper homeostasis and copper-induced cell death in the pathogenesis of cardiovascular disease and therapeutic strategies[J]. Cell Death Dis, 2023, 14(2):105. DOI: 10.1038/s41419-023-05639-w.
|
[46] |
HU Y C, GU X, ZHANG Y, et al. Adrenomedullin,transcriptionally regulated by vitamin D receptors,alleviates atherosclerosis in mice through suppressing AMPK-mediated endothelial ferroptosis[J]. Environ Toxicol, 2024, 39(1):199-211. DOI: 10.1002/tox.23958.
|
[47] |
TAO Y Y, ZHAO Q L, LU C B, et al. Melatonin suppresses atherosclerosis by ferroptosis inhibition via activating NRF2 pathway[J]. FASEB J, 2024, 38(10):e23678. DOI: 10.1096/fj.202400427RR.
|
[48] |
ZHU L, BAO Y L, LIU Z J, et al. Gualou-Xiebai herb pair ameliorate atherosclerosis in HFD-induced ApoE-/- mice and inhibit the ox-LDL-induced injury of HUVECs by regulating the Nrf2-mediated ferroptosis[J]. J Ethnopharmacol, 2024, 326:117892. DOI: 10.1016/j.jep.2024.117892.
|
[49] |
WU Z N, CHEN T W, QIAN Y X, et al. High-dose ionizing radiation accelerates atherosclerotic plaque progression by regulating P38/NCOA4-mediated ferritinophagy/ferroptosis of endothelial cells[J]. Int J Radiat Oncol Biol Phys, 2023, 117(1):223-236. DOI: 10.1016/j.ijrobp.2023.04.004.
|
[50] |
XIANG P, CHEN Q Q, CHEN L, et al. Metabolite Neu5Ac triggers SLC3A2 degradation promoting vascular endothelial ferroptosis and aggravates atherosclerosis progression in ApoE-/- mice[J]. Theranostics, 2023, 13(14):4993-5016. DOI: 10.7150/thno.87968.
|
[51] |
YANG S J, LI Y J, ZHOU L J, et al. Copper homeostasis and cuproptosis in atherosclerosis:metabolism,mechanisms and potential therapeutic strategies[J]. Cell Death Discov, 2024, 10(1):25. DOI: 10.1038/s41420-023-01796-1.
|
[52] |
SUN Y, WANG X, LIU T W, et al. The multifaceted role of the SASP in atherosclerosis:from mechanisms to therapeutic opportunities[J]. Cell Biosci, 2022, 12(1):74. DOI: 10.1186/s13578-022-00815-5.
|
[53] |
BU L L, YUAN H H, XIE L L, et al. New dawn for atherosclerosis:vascular endothelial cell senescence and death[J]. Int J Mol Sci, 2023, 24(20):15160. DOI: 10.3390/ijms242015160.
|
[54] |
YANG Y F, YUAN L Y, XIONG H, et al. Inhibition of vascular calcification by Compound Danshen Dripping Pill through multiple mechanisms[J]. Phytomedicine, 2024, 129:155618. DOI: 10.1016/j.phymed.2024.155618.
|
[55] |
YAN Q, ZHENG R, LI Y, et al. PM2.5-induced premature senescence in HUVECs through the SIRT1/PGC-1α/SIRT3 pathway[J]. Sci Total Environ, 2024, 921:171177. DOI: 10.1016/j.scitotenv.2024.171177.
|
[56] |
XU J X, TANG M L, LU Z F, et al. A novel role for YPEL2 in mediating endothelial cellular senescence via the p53/p21 pathway[J]. Mech Ageing Dev, 2023, 211:111803. DOI: 10.1016/j.mad.2023.111803.
|
[57] |
XU H L, FU J, TU Q, et al. The SGLT2 inhibitor empagliflozin attenuates atherosclerosis progression by inducing autophagy[J]. J Physiol Biochem, 2024, 80(1):27-39. DOI: 10.1007/s13105-023-00974-0.
|
[58] |
ZHENG Z H, WANG J J, LIN J G, et al. Cytosolic DNA initiates a vicious circle of aging-related endothelial inflammation and mitochondrial dysfunction via STING:the inhibitory effect of cilostazol[J]. Acta Pharmacol Sin, 2024, 45(9):1879-1897. DOI: 10.1038/s41401-024-01281-0.
|
[59] |
WU J Z, LIU S J, BANERJEE O, et al. Disturbed flow impairs MerTK-mediated efferocytosis in aortic endothelial cells during atherosclerosis[J]. Theranostics, 2024, 14(6):2427-2441. DOI: 10.7150/thno.93036.
|
[60] |
MAURYA M R, GUPTA S, LI J Y, et al. Longitudinal shear stress response in human endothelial cells to atheroprone and atheroprotective conditions[J]. Proc Natl Acad Sci U S A, 2021, 118(4):e2023236118. DOI: 10.1073/pnas.2023236118.
|
[61] |
CANHAM L, SENDAC S, DIAGBOUGA M R, et al. EVA1A(Eva-1 homolog A)promotes endothelial apoptosis and inflammatory activation under disturbed flow via regulation of autophagy[J]. Arterioscler Thromb Vasc Biol, 2023, 43(4):547-561. DOI: 10.1161/ATVBAHA.122.318110.
|
[62] |
NASR M, FAY A, LUPIERI A, et al. PI3KCIIα-dependent autophagy program protects from endothelial dysfunction and atherosclerosis in response to low shear stress in mice[J]. Arterioscler Thromb Vasc Biol, 2024, 44(3):620-634. DOI: 10.1161/ATVBAHA.123.319978.
|
[63] |
REN H, HU W Y, JIANG T, et al. Mechanical stress induced mitochondrial dysfunction in cardiovascular diseases:novel mechanisms and therapeutic targets[J]. Biomedecine Pharmacother, 2024, 174:116545. DOI: 10.1016/j.biopha.2024.116545.
|
[64] |
TAMARGO I A, BAEK K I, XU C B, et al. HEG1 protects against atherosclerosis by regulating stable flow-induced KLF2/4 expression in endothelial cells[J]. Circulation, 2024, 149(15):1183-1201. DOI: 10.1161/CIRCULATIONAHA.123.064735.
|
[65] |
ANDO J, YAMAMOTO K. Hemodynamic forces,endothelial mechanotransduction,and vascular diseases[J]. Magn Reson Med Sci, 2022, 21(2):258-266. DOI: 10.2463/mrms.rev.2021-0018.
|
[66] |
TSAI Y C, HSIEH H J, LIAO F, et al. Laminar flow attenuates interferon-induced inflammatory responses in endothelial cells[J]. Cardiovasc Res, 2007, 74(3):497-505. DOI: 10.1016/j.cardiores.2007.02.030.
|
[67] |
LE N T, SANDHU U G, QUINTANA-QUEZADA R A, et al. Flow signaling and atherosclerosis[J]. Cell Mol Life Sci, 2017, 74(10):1835-1858. DOI: 10.1007/s00018-016-2442-4.
|
[68] |
LI J Y, ZENG Q C, XIONG Z Y, et al. Trimethylamine N-oxide induces osteogenic responses in human aortic valve interstitial cells in vitro and aggravates aortic valve lesions in mice[J]. Cardiovasc Res, 2022, 118(8):2018-2030. DOI: 10.1093/cvr/cvab243.
|
[69] |
WU W R, BAO W Z, CHEN X L, et al. Endothelial Gata6 deletion reduces monocyte recruitment and proinflammatory macrophage formation and attenuates atherosclerosis through Cmpk2-Nlrp3 pathways[J]. Redox Biol, 2023, 64:102775. DOI: 10.1016/j.redox.2023.102775.
|
[70] |
YANG Q B, YUAN H M, CHEN M, et al. Metformin ameliorates the progression of atherosclerosis via suppressing macrophage infiltration and inflammatory responses in rabbits[J]. Life Sci, 2018, 198:56-64. DOI: 10.1016/j.lfs.2018.02.017.
|
[71] |
LIN W W, HUANG F, YUAN Y, et al. Endothelial exosomes work as a functional mediator to activate macrophages[J]. Front Immunol, 2023, 14:1169471. DOI: 10.3389/fimmu.2023.1169471.
|
[72] |
CHEN L F, SHANG C X, WANG B, et al. HDAC3 inhibitor suppresses endothelial-to-mesenchymal transition via modulating inflammatory response in atherosclerosis[J]. Biochem Pharmacol, 2021, 192:114716. DOI: 10.1016/j.bcp.2021.114716.
|
[73] |
PARK H S, ABD EL-ATY A M, JEONG J H, et al. Capmatinib suppresses LPS-induced interaction between HUVECs and THP-1 monocytes through suppression of inflammatory responses[J]. Biomed J, 2023, 46(2):100534. DOI: 10.1016/j.bj.2022.04.005.
|
[74] |
LI X, ZHENG T F, ZHANG Y, et al. Dickkopf-1 promotes vascular smooth muscle cell foam cell formation and atherosclerosis development through CYP4A11/SREBP2/ABCA1[J]. FASEB J, 2023, 37(8):e23048. DOI: 10.1096/fj.202300295R.
|
[75] |
LIU X L, ZHENG T F, ZHANG Y, et al. Endothelial dickkopf-1 promotes smooth muscle cell-derived foam cell formation via USP53-mediated deubiquitination of SR-a during atherosclerosis[J]. Int J Biol Sci, 2024, 20(8):2943-2964. DOI: 10.7150/ijbs.91957.
|
[76] |
LI B, ZANG G Y, ZHONG W, et al. Activation of CD137 signaling promotes neointimal formation by attenuating TET2 and transferrring from endothelial cell-derived exosomes to vascular smooth muscle cells[J]. Biomedecine Pharmacother, 2020, 121:109593. DOI: 10.1016/j.biopha.2019.109593.
|
[77] |
WANG C, LIU C, SHI J X, et al. Nicotine exacerbates endothelial dysfunction and drives atherosclerosis via extracellular vesicle-miRNA[J]. Cardiovasc Res, 2023, 119(3):729-742. DOI: 10.1093/cvr/cvac140.
|
[78] |
ZHOU H K, KHAN D, GERDES N, et al. Colchicine protects against ethanol-induced senescence and senescence-associated secretory phenotype in endothelial cells[J]. Antioxidants, 2023, 12(4):960. DOI: 10.3390/antiox12040960.
|
[79] |
ZHANG Q, LIU J, DUAN H, et al. Activation of Nrf2/HO-1 signaling:an important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress[J]. J Adv Res, 2021, 34:43-63. DOI: 10.1016/j.jare.2021.06.023.
|
[80] |
XUE J J, ZHANG Z W, SUN Y T, et al. Research progress and molecular mechanisms of endothelial cells inflammation in vascular-related diseases[J]. J Inflamm Res, 2023, 16:3593-3617. DOI: 10.2147/JIR.S418166.
|
[81] |
CHHOR M, TULPAR E, NGUYEN T, et al. E-cigarette aerosol condensate leads to impaired coronary endothelial cell health and restricted angiogenesis[J]. Int J Mol Sci, 2023, 24(7):6378. DOI: 10.3390/ijms24076378.
|