[1] |
WANG H, CHAI K, DU M H, et al. Prevalence and incidence of heart failure among urban patients in China:a national population-based analysis[J]. Circ Heart Fail, 2021, 14(10):e008406. DOI: 10.1161/CIRCHEARTFAILURE.121.008406.
|
[2] |
|
[3] |
BURG M M. Depression and HeartFailure:what then must we do?[J]. JACC Heart Fail, 2022, 10(4):263-265. DOI: 10.1016/j.jchf.2021.12.003.
|
[4] |
SMITH K. Mental health:a world of depression[J]. Nature, 2014, 515(7526):181. DOI: 10.1038/515180a.
|
[5] |
GUSTAD L T, LAUGSAND L E, JANSZKY I, et al. Symptoms of anxiety and depression and risk of heart failure:the HUNT Study[J]. Eur J Heart Fail, 2014, 16(8):861-870. DOI: 10.1002/ejhf.133.
|
[6] |
REGAN J A, KITZMAN D W, LEIFER E S, et al. Impact of age on comorbidities and outcomes in HeartFailure with ReducedEjection fraction[J]. JACC Heart Fail, 2019, 7(12):1056-1065. DOI: 10.1016/j.jchf.2019.09.004.
|
[7] |
SBOLLI M, FIUZAT M, CANI D, et al. Depression and heart failure:the lonely comorbidity[J]. Eur J Heart Fail, 2020, 22(11):2007-2017. DOI: 10.1002/ejhf.1865.
|
[8] |
CHEN Z J, WU Y S, DUAN J H, et al. The cholinergic anti-inflammatory pathway could be an important mechanism underling the comorbidity of depression and cardiovascular disease:a comment to Shao et al[J]. Psychiatry Res, 2020, 286:112881. DOI: 10.1016/j.psychres.2020.112881.
|
[9] |
TRØSEID M, ANDERSEN G Ø, BROCH K, et al. The gut microbiome in coronary artery disease and heart failure:current knowledge and future directions[J]. EBioMedicine, 2020, 52:102649. DOI: 10.1016/j.ebiom.2020.102649.
|
[10] |
|
[11] |
BERMON S, PETRIZ B, KAJĖNIENĖ A, et al. The microbiota:an exercise immunology perspective[J]. Exerc Immunol Rev,2015,21:70-79.
|
[12] |
SENDER R, FUCHS S, MILO R. Revised estimates for the number of human and bacteria cells in the body[J]. PLoS Biol, 2016, 14(8):e1002533. DOI: 10.1371/journal.pbio.1002533.
|
[13] |
COSTELLO E K, LAUBER C L, HAMADY M, et al. Bacterial community variation in human body habitats across space and time[J]. Science, 2009, 326(5960):1694-1697. DOI: 10.1126/science.1177486.
|
[14] |
CARMODY R N, GERBER G K, LUEVANO J M Jr, et al. Diet dominates host genotype in shaping the murine gut microbiota[J]. Cell Host Microbe, 2015, 17(1):72-84. DOI: 10.1016/j.chom.2014.11.010.
|
[15] |
SEKIROV I, RUSSELL S L, ANTUNES L C, et al. Gut microbiota in health and disease[J]. Physiol Rev, 2010, 90(3):859-904. DOI: 10.1152/physrev.00045.2009.
|
[16] |
TREMAROLI V, BÄCKHED F. Functional interactions between the gut microbiota and host metabolism[J]. Nature, 2012, 489(7415):242-249. DOI: 10.1038/nature11552.
|
[17] |
TANG W H W, LI D Y, HAZEN S L. Dietary metabolism,the gut microbiome,and heart failure[J]. Nat Rev Cardiol, 2019, 16(3):137-154. DOI: 10.1038/s41569-018-0108-7.
|
[18] |
HAMILTON M K, BOUDRY G, LEMAY D G, et al. Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent[J]. Am J Physiol Gastrointest Liver Physiol, 2015, 308(10):G840-G851. DOI: 10.1152/ajpgi.00029.2015.
|
[19] |
BUNKER J J, FLYNN T M, KOVAL J C, et al. Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A[J]. Immunity, 2015, 43(3):541-553. DOI: 10.1016/j.immuni.2015.08.007.
|
[20] |
DE OLIVEIRA G L V, LEITE A Z, HIGUCHI B S, et al. Intestinal dysbiosis and probiotic applications in autoimmune diseases[J]. Immunology, 2017, 152(1):1-12. DOI: 10.1111/imm.12765.
|
[21] |
MEINITZER S, BARANYI A, HOLASEK S, et al. Sex-specific associations of trimethylamine-N-oxide and zonulin with signs of depression in carbohydrate malabsorbers and nonmalabsorbers[J]. Dis Markers, 2020, 2020:7897240. DOI: 10.1155/2020/7897240.
|
[22] |
DU Q, WANG Y H, ZHAO H Q, et al. Damages and its mechanism of the blood brain barrier in rats with diabetes mellitus with depression[J]. Zhongguo Ying Yong Sheng Li Xue Za Zhi, 2016, 32(6):558-562. DOI: 10.13459/j.cnki.cjap.2016.06.016.
|
[23] |
HOU K J, WU Z X, CHEN X Y, et al. Microbiota in health and diseases[J]. Signal Transduct Target Ther, 2022, 7(1):135. DOI: 10.1038/s41392-022-00974-4.
|
[24] |
LUEDDE M, WINKLER T, HEINSEN F A, et al. Heart failure is associated with depletion of core intestinal microbiota[J]. ESC Heart Fail, 2017, 4(3):282-290. DOI: 10.1002/ehf2.12155.
|
[25] |
JIN L, SHI X M, YANG J, et al. Gut microbes in cardiovascular diseases and their potential therapeutic applications[J]. Protein Cell, 2021, 12(5):346-359. DOI: 10.1007/s13238-020-00785-9.
|
[26] |
SUN W J, DU D B, FU T Z, et al. Alterations of the gut microbiota in patients with severe chronic heart failure[J]. Front Microbiol, 2021, 12:813289. DOI: 10.3389/fmicb.2021.813289.
|
[27] |
YANG J, ZHENG P, LI Y F, et al. Landscapes of bacterial and metabolic signatures and their interaction in major depressive disorders[J]. Sci Adv, 2020, 6(49):eaba8555. DOI: 10.1126/sciadv.aba8555.
|
[28] |
LIANG S S, SIN Z Y, YU J L, et al. Multi-cohort analysis of depression-associated gut bacteria sheds insight on bacterial biomarkers across populations[J]. Cell Mol Life Sci, 2022, 80(1):9. DOI: 10.1007/s00018-022-04650-2.
|
[29] |
KELLY J R, BORRE Y, O' BRIEN C, et al. Transferring the blues:depression-associated gut microbiota induces neurobehavioural changes in the rat[J]. J Psychiatr Res, 2016, 82:109-118. DOI: 10.1016/j.jpsychires.2016.07.019.
|
[30] |
LI B, WANG H Y, HUANG J H, et al. Polysaccharide,the active component of Dendrobium officinale,ameliorates metabolic hypertension in rats via regulating intestinal flora-SCFAs-vascular axis[J]. Front Pharmacol, 2022, 13:935714. DOI: 10.3389/fphar.2022.935714.
|
[31] |
CARLEY A N, MAURYA S K, FASANO M, et al. Short-chain fatty acids outpace ketone oxidation in the failing heart[J]. Circulation, 2021, 143(18):1797-1808. DOI: 10.1161/CIRCULATIONAHA.120.052671.
|
[32] |
SKONIECZNA-ŻYDECKA K, GROCHANS E, MACIEJEWSKA D, et al. Faecal short chain fatty acids profile is changed in Polish depressive women[J]. Nutrients, 2018, 10(12):1939. DOI: 10.3390/nu10121939.
|
[33] |
SONG L J, SUN Q H, ZHENG H N, et al. Roseburia hominis alleviates neuroinflammation via short-chain fatty acids through histone deacetylase inhibition[J]. Mol Nutr Food Res, 2022, 66(18):e2200164. DOI: 10.1002/mnfr.202200164.
|
[34] |
SELBER-HNATIW S, SULTANA T, TSE W, et al. Metabolic networks of the human gut microbiota[J]. Microbiology, 2020, 166(2):96-119. DOI: 10.1099/mic.0.000853.
|
[35] |
WILSON TANG W H, WANG Z N, FAN Y Y, et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure:refining the gut hypothesis[J]. J Am Coll Cardiol, 2014, 64(18):1908-1914. DOI: 10.1016/j.jacc.2014.02.617.
|
[36] |
LI Z H, WU Z Y, YAN J Y, et al. Gut microbe-derived metabolite trimethylamine N-oxide induces cardiac hypertrophy and fibrosis[J]. Lab Invest, 2019, 99(3):346-357. DOI: 10.1038/s41374-018-0091-y.
|
[37] |
MAKRECKA-KUKA M, VOLSKA K, ANTONE U, et al. Trimethylamine N-oxide impairs pyruvate and fatty acid oxidation in cardiac mitochondria[J]. Toxicol Lett, 2017, 267:32-38. DOI: 10.1016/j.toxlet.2016.12.017.
|
[38] |
BARANYI A, ENKO D, VON LEWINSKI D, et al. Assessment of trimethylamine N-oxide(TMAO)as a potential biomarker of severe stress in patients vulnerable to posttraumatic stress disorder(PTSD)after acute myocardial infarction[J]. Eur J Psychotraumatol, 2021, 12(1):1920201. DOI: 10.1080/20008198.2021.1920201.
|
[39] |
HERNANDEZ L, WARD L J, AREFIN S, et al. Blood-brain barrier and gut barrier dysfunction in chronic kidney disease with a focus on circulating biomarkers and tight junction proteins[J]. Sci Rep, 2022, 12(1):4414. DOI: 10.1038/s41598-022-08387-7.
|
[40] |
MENG F Q, LI N, LI D L, et al. The presence of elevated circulating trimethylamine N-oxide exaggerates postoperative cognitive dysfunction in aged rats[J]. Behav Brain Res, 2019, 368:111902. DOI: 10.1016/j.bbr.2019.111902.
|
[41] |
LIANG S, WANG T, HU X, et al. Administration of Lactobacillus helveticus NS8 improves behavioral,cognitive,and biochemical aberrations caused by chronic restraint stress[J]. Neuroscience, 2015, 310:561-577. DOI: 10.1016/j.neuroscience.2015.09.033.
|
[42] |
LUKIĆ I, GETSELTER D, KOREN O, et al. Role of tryptophan in microbiota-induced depressive-like behavior:evidence from tryptophan depletion study[J]. Front Behav Neurosci, 2019, 13:123. DOI: 10.3389/fnbeh.2019.00123.
|
[43] |
KRAUTKRAMER K A, FAN J, BÄCKHED F. Gut microbial metabolites as multi-Kingdom intermediates[J]. Nat Rev Microbiol, 2021, 19(2):77-94. DOI: 10.1038/s41579-020-0438-4.
|
[44] |
SONG P, RAMPRASATH T, WANG H, et al. Abnormal kynurenine pathway of tryptophan catabolism in cardiovascular diseases[J]. Cell Mol Life Sci, 2017, 74(16):2899-2916. DOI: 10.1007/s00018-017-2504-2.
|
[45] |
DSCHIETZIG T B, KELLNER K H, SASSE K, et al. Plasma kynurenine predicts severity and complications of heart failure and associates with established biochemical and clinical markers of disease[J]. Kidney Blood Press Res, 2019, 44(4):765-776. DOI: 10.1159/000501483.
|
[46] |
CHAAR D, DUMONT B, VULESEVIC B, et al. Neutrophils pro-inflammatory and anti-inflammatory cytokine release in patients with heart failure and reduced ejection fraction[J]. ESC Heart Fail, 2021, 8(5):3855-3864. DOI: 10.1002/ehf2.13539.
|
[47] |
LI Y, FENG Y F, LIU X T, et al. Songorine promotes cardiac mitochondrial biogenesis via Nrf2 induction during sepsis[J]. Redox Biol, 2021, 38:101771. DOI: 10.1016/j.redox.2020.101771.
|
[48] |
QIN X Y, SHAN Q H, FANG H, et al. PSD-93 up-regulates the synaptic activity of corticotropin-releasing hormone neurons in the paraventricular nucleus in depression[J]. Acta Neuropathol, 2021, 142(6):1045-1064. DOI: 10.1007/s00401-021-02371-7.
|
[49] |
HUO J Y, JIANG W Y, YIN T, et al. Intestinal barrier dysfunction exacerbates neuroinflammation via the TLR4 pathway in mice with heart failure[J]. Front Physiol, 2021, 12:712338. DOI: 10.3389/fphys.2021.712338.
|
[50] |
CHEN B C, HUNG M Y, WANG H F, et al. GABA tea attenuates cardiac apoptosis in spontaneously hypertensive rats(SHR)by enhancing PI3K/Akt-mediated survival pathway and suppressing Bax/Bak dependent apoptotic pathway[J]. Environ Toxicol, 2018, 33(7):789-797. DOI: 10.1002/tox.22565.
|
[51] |
CAULEY E, WANG X, DYAVANAPALLI J, et al. Neurotransmission to parasympathetic cardiac vagal neurons in the brain stem is altered with left ventricular hypertrophy-induced heart failure[J]. Am J Physiol Heart Circ Physiol, 2015, 309(8):H1281-H1287. DOI: 10.1152/ajpheart.00445.2015.
|
[52] |
STRANDWITZ P, KIM K H, TEREKHOVA D, et al. GABA-modulating bacteria of the human gut microbiota[J]. Nat Microbiol, 2019, 4(3):396-403. DOI: 10.1038/s41564-018-0307-3.
|
[53] |
FUCHS T, JEFFERSON S J, HOOPER A, et al. Disinhibition of somatostatin-positive GABAergic interneurons results in an anxiolytic and antidepressant-like brain state[J]. Mol Psychiatry, 2017, 22(6):920-930. DOI: 10.1038/mp.2016.188.
|
[54] |
OSADCHIY V, MARTIN C R, MAYER E A. The gut-brain axis and the microbiome:mechanisms and clinical implications[J]. Clin Gastroenterol Hepatol, 2019, 17(2):322-332. DOI: 10.1016/j.cgh.2018.10.002.
|
[55] |
NEUFELD K M, KANG N, BIENENSTOCK J, et al. Reduced anxiety-like behavior and central neurochemical change in germ-free mice[J]. Neurogastroenterol Motil, 2011, 23(3):255-264,e119. DOI: 10.1111/j.1365-2982.2010.01620.x.
|
[56] |
REDWINE L S, WIRTZ P H, HONG S Z, et al. Depression as a potential modulator of Beta-adrenergic-associated leukocyte mobilization in heart failure patients[J]. J Am Coll Cardiol, 2010, 56(21):1720-1727. DOI: 10.1016/j.jacc.2010.04.064.
|
[57] |
ADELBORG K, SCHMIDT M, SUNDBØLL J, et al. Mortality risk among heart failure patients with depression:a nationwide population-based cohort study[J]. J Am Heart Assoc, 2016, 5(9):e004137. DOI: 10.1161/JAHA.116.004137.
|
[58] |
WANG Y, ZHAN G F, CAI Z W, et al. Vagus nerve stimulation in brain diseases:therapeutic applications and biological mechanisms[J]. Neurosci Biobehav Rev, 2021, 127:37-53. DOI: 10.1016/j.neubiorev.2021.04.018.
|
[59] |
VADDER F D, KOVATCHEVA-DATCHARY P, GONCALVES D, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits[J]. Cell, 2014, 156(1/2):84-96. DOI: 10.1016/j.cell.2013.12.016.
|
[60] |
EGEROD K L, PETERSEN N, TIMSHEL P N, et al. Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms[J]. Mol Metab, 2018, 12:62-75. DOI: 10.1016/j.molmet.2018.03.016.
|
[61] |
BERCIK P, PARK A J, SINCLAIR D, et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication[J]. Neurogastroenterol Motil, 2011, 23(12):1132-1139. DOI: 10.1111/j.1365-2982.2011.01796.x.
|
[62] |
BRAVO J A, FORSYTHE P, CHEW M V, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve[J]. Proc Natl Acad Sci U S A, 2011, 108(38):16050-16055. DOI: 10.1073/pnas.1102999108.
|
[63] |
HAN W F, TELLEZ L A, PERKINS M H, et al. A neural circuit for gut-induced reward[J]. Cell, 2018, 175(3):887-888. DOI: 10.1016/j.cell.2018.10.018.
|
[64] |
VEST A R, CHAN M, DESWAL A, et al. Nutrition,obesity,and Cachexia in patients with heart failure:a consensus statement from the heart failure society of America scientific statements committee[J]. J Card Fail, 2019, 25(5):380-400. DOI: 10.1016/j.cardfail.2019.03.007.
|
[65] |
BAYERLE P, BEYER S, TEGTBUR U, et al. Exercise capacity,iron status,body composition,and Mediterranean diet in patients with chronic heart failure[J]. Nutrients, 2022, 15(1):36. DOI: 10.3390/nu15010036.
|
[66] |
WALKER M E, O'DONNELL A A, HIMALI J J, et al. Associations of the mediterranean-dietary approaches to stop hypertension intervention for neurodegenerative delay diet with cardiac remodelling in the community:the Framingham Heart Study[J]. Br J Nutr, 2021, 126(12):1888-1896. DOI: 10.1017/S0007114521000660.
|
[67] |
GEORGOUSOPOULOU E N, KASTORINI C M, MILIONIS H J, et al. Association between Mediterranean diet and non-fatal cardiovascular events,in the context of anxiety and depression disorders:a case/case-control study[J]. Hellenike Kardiologike Epitheorese,2014,55(1):24-31.
|
[68] |
HUANG R X, WANG K, HU J N. Effect of probiotics on depression:a systematic review and meta-analysis of randomized controlled trials[J]. Nutrients, 2016, 8(8):483. DOI: 10.3390/nu8080483.
|
[69] |
GAN X T, ETTINGER G, HUANG C X, et al. Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat[J]. Circ Heart Fail, 2014, 7(3):491-499. DOI: 10.1161/CIRCHEARTFAILURE.113.000978.
|
[70] |
VLASOV A A, SHPERLING M I, TERKIN D A, et al. Effect of prebiotic complex on gut microbiota and endotoxemia in female rats with modeled heart failure[J]. Bull Exp Biol Med, 2020, 168(4):435-438. DOI: 10.1007/s10517-020-04726-8.
|
[71] |
LIM S H. Larch Arabinogalactan attenuates myocardial injury by inhibiting apoptotic cascades in a rat model of ischemia-reperfusion[J]. J Med Food, 2017, 20(7):691-699. DOI: 10.1089/jmf.2016.3886.
|
[72] |
MOLUDI J, KHEDMATGOZAR H, NACHVAK S M, et al. The effects of co-administration of probiotics and prebiotics on chronic inflammation,and depression symptoms in patients with coronary artery diseases:a randomized clinical trial[J]. Nutr Neurosci, 2022, 25(8):1659-1668. DOI: 10.1080/1028415X.2021.1889451.
|
[73] |
YAN T X, NIAN T T, LIAO Z Z, et al. Antidepressant effects of a polysaccharide from okra(Abelmoschus esculentus(L)Moench)by anti-inflammation and rebalancing the gut microbiota[J]. Int J Biol Macromol, 2020, 144:427-440. DOI: 10.1016/j.ijbiomac.2019.12.138.
|
[74] |
RAO J J, QIAO Y, XIE R N, et al. Fecal microbiota transplantation ameliorates stress-induced depression-like behaviors associated with the inhibition of glial and NLRP3 inflammasome in rat brain[J]. J Psychiatr Res, 2021, 137:147-157. DOI: 10.1016/j.jpsychires.2021.02.057.
|
[75] |
GUO Q Q, LIN H, CHEN P C, et al. Dynamic changes of intestinal flora in patients with irritable bowel syndrome combined with anxiety and depression after oral administration of enterobacteria capsules[J]. Bioengineered, 2021, 12(2):11885-11897. DOI: 10.1080/21655979.2021.1999374.
|
[76] |
ZHANG Y, ZHANG S, LI B L, et al. Gut microbiota dysbiosis promotes age-related atrial fibrillation by lipopolysaccharide and glucose-induced activation of NLRP3-inflammasome[J]. Cardiovasc Res, 2022, 118(3):785-797. DOI: 10.1093/cvr/cvab114.
|
[77] |
ZHONG H J, ZENG H L, CAI Y L, et al. Washed microbiota transplantation lowers blood pressure in patients with hypertension[J]. Front Cell Infect Microbiol, 2021, 11:679624. DOI: 10.3389/fcimb.2021.679624.
|