Chinese General Practice ›› 2023, Vol. 26 ›› Issue (15): 1847-1856.DOI: 10.12114/j.issn.1007-9572.2022.0851
Special Issue: 内分泌代谢性疾病最新文章合辑; 数智医疗最新文章合辑
• Original Research·Diabetes Complications • Previous Articles Next Articles
Received:
2022-12-16
Revised:
2023-01-24
Published:
2023-05-20
Online:
2022-12-20
Contact:
DUAN Junguo
通讯作者:
段俊国
作者简介:
基金资助:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chinagp.net/EN/10.12114/j.issn.1007-9572.2022.0851
序号 | 被引作者 | 被引频次(次) | 中介中心性 |
---|---|---|---|
1 | GULSHAN V | 412 | 0.03 |
2 | ABRÀMOFF M D | 363 | 0.17 |
3 | TING D W | 285 | 0.04 |
4 | NIEMEIJER M | 240 | 0.02 |
5 | HE K | 201 | 0.04 |
6 | QUELLEC G | 179 | 0.04 |
7 | GARGEYA R | 176 | 0.02 |
8 | SZEGEDY C | 172 | 0.03 |
9 | DECENCIERE E | 164 | 0.04 |
10 | KRIZHEVSKY A | 153 | 0.03 |
Table 1 The top 10 authors of cited frequency for studies regarding artificial intelligence in diabetic retinopathy
序号 | 被引作者 | 被引频次(次) | 中介中心性 |
---|---|---|---|
1 | GULSHAN V | 412 | 0.03 |
2 | ABRÀMOFF M D | 363 | 0.17 |
3 | TING D W | 285 | 0.04 |
4 | NIEMEIJER M | 240 | 0.02 |
5 | HE K | 201 | 0.04 |
6 | QUELLEC G | 179 | 0.04 |
7 | GARGEYA R | 176 | 0.02 |
8 | SZEGEDY C | 172 | 0.03 |
9 | DECENCIERE E | 164 | 0.04 |
10 | KRIZHEVSKY A | 153 | 0.03 |
序号 | 被引期刊 | JCR分区 | IF | 被引频次 | 中介中心性 |
---|---|---|---|---|---|
1 | Ophthalmology | Q1 | 14.28 | 791 | 0.02 |
2 | Invest Ophth Vis Sci | Q1 | 4.93 | 711 | 0.01 |
3 | Ieee T Med Imaging | Q1 | 11.04 | 628 | 0.01 |
4 | Brit J Ophthalmol | Q1 | 5.91 | 576 | 0.01 |
5 | Jama-J Am Med Assoc | Q1 | 157.38 | 526 | 0.03 |
6 | Med Image Anal | Q1 | 13.83 | 432 | 0.01 |
7 | Diabetes Care | Q1 | 17.16 | 431 | 0.01 |
8 | Plos One | Q2 | 3.75 | 413 | 0.02 |
9 | Am J Ophthalmol | Q1 | 5.49 | 403 | 0.01 |
10 | Lect Notes Comput Sc | 未查到 | — | 391 | 0.03 |
Table 2 The top 10 journals of cited frequency for studies regarding artificial intelligence in diabetic retinopathy
序号 | 被引期刊 | JCR分区 | IF | 被引频次 | 中介中心性 |
---|---|---|---|---|---|
1 | Ophthalmology | Q1 | 14.28 | 791 | 0.02 |
2 | Invest Ophth Vis Sci | Q1 | 4.93 | 711 | 0.01 |
3 | Ieee T Med Imaging | Q1 | 11.04 | 628 | 0.01 |
4 | Brit J Ophthalmol | Q1 | 5.91 | 576 | 0.01 |
5 | Jama-J Am Med Assoc | Q1 | 157.38 | 526 | 0.03 |
6 | Med Image Anal | Q1 | 13.83 | 432 | 0.01 |
7 | Diabetes Care | Q1 | 17.16 | 431 | 0.01 |
8 | Plos One | Q2 | 3.75 | 413 | 0.02 |
9 | Am J Ophthalmol | Q1 | 5.49 | 403 | 0.01 |
10 | Lect Notes Comput Sc | 未查到 | — | 391 | 0.03 |
序号 | 文章标题 | 第一作者 | 发表年份(年) | 共被引频次(次) |
---|---|---|---|---|
1 | Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs[ | GULSHAN V | 2016 | 354 |
2 | Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images from Multiethnic Populations with Diabetes[ | TING D W | 2017 | 218 |
3 | Automated Identification of Diabetic Retinopathy Using Deep Learning[ | GARGEYA R | 2017 | 175 |
4 | Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning[ | ABRÀMOFF M D | 2016 | 127 |
5 | Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices[ | ABRÀMOFF M D | 2018 | 74 |
6 | Deep learning[ | LECUN Y | 2015 | 69 |
7 | Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning[ | KERMANY D S | 2018 | 61 |
8 | Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning[ | POPLIN R | 2018 | 61 |
9 | Clinically applicable deep learning for diagnosis and referral in retinal disease[ | DE F | 2018 | 59 |
10 | Grader Variability and the Importance of Reference Standards for Evaluating Machine Learning Models for Diabetic Retinopathy[ | KRAUSE J | 2018 | 58 |
Table 3 The top 10 most-cited articles for studies regarding artificial intelligence in diabetic retinopathy
序号 | 文章标题 | 第一作者 | 发表年份(年) | 共被引频次(次) |
---|---|---|---|---|
1 | Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs[ | GULSHAN V | 2016 | 354 |
2 | Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images from Multiethnic Populations with Diabetes[ | TING D W | 2017 | 218 |
3 | Automated Identification of Diabetic Retinopathy Using Deep Learning[ | GARGEYA R | 2017 | 175 |
4 | Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning[ | ABRÀMOFF M D | 2016 | 127 |
5 | Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices[ | ABRÀMOFF M D | 2018 | 74 |
6 | Deep learning[ | LECUN Y | 2015 | 69 |
7 | Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning[ | KERMANY D S | 2018 | 61 |
8 | Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning[ | POPLIN R | 2018 | 61 |
9 | Clinically applicable deep learning for diagnosis and referral in retinal disease[ | DE F | 2018 | 59 |
10 | Grader Variability and the Importance of Reference Standards for Evaluating Machine Learning Models for Diabetic Retinopathy[ | KRAUSE J | 2018 | 58 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] | |
[8] |
陈悦,陈超美,刘则渊,等. CiteSpace知识图谱的方法论功能[J]. 科学学研究,2015,33(2):242-253. DOI:10.16192/j.cnki.1003-2053.2015.02.009.
|
[9] |
|
[10] |
李科科,于文兵,李硕奇,等. 基于CiteSpace的大学生社交焦虑研究的热点与前沿趋势分析[J]. 中国全科医学,2022,25(33):4217-4226. DOI:10.12114/j.issn.1007-9572.2022.0390.
|
[11] |
陈冉,杨皓然,史会连,等. 1991—2021年肝硬化营养研究热点及趋势可视化分析[J]. 中国全科医学,2022(32):4091-4098. DOI:10.12114/j.issn.1007-9572.2022.0247.
|
[12] |
|
[13] |
|
[14] | |
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
尹义龙,袭肖明. 眼科疾病智能诊断方法最新进展[J]. 山东大学学报(医学版),2020,58(11):33-38. DOI:10.6040/j.issn.1671-7554.0.2020.1136.
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
药品监督管理局,国家药监局关于批准注册96个医疗器械产品公告[EB/OL]. (2020-09-16)[2023-01-08].
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[1] | NIU Ben, ZHU Xiaoqian, YANG Chen, LIANG Wannian, LIU Jue. Evolution and Trends of Domestic and International Research Hotspots in the Field of Large Language Models in Medicine Based on CiteSpace [J]. Chinese General Practice, 2025, 28(25): 3200-3208. |
[2] | WANG Hui, HU Yinhuan, FENG Xiandong, LIU Sha, WANG Yangfan. The Application of Artificial Intelligence in Psychological Interventions: Effectiveness, Challenges, and Prospects [J]. Chinese General Practice, 2025, 28(25): 3209-3216. |
[3] | PAN Qi, REN Jingjing, MA Fanghui, HU Mengjie. Survey of General Practitioners' Cognition and Needs for AI Assisted Diagnosis and Treatment Systems [J]. Chinese General Practice, 2025, 28(25): 3127-3136. |
[4] | ZHAO Yali, LU Xiaoqin, LIU Jue, ZHANG Yifan, ZHU Zuyi, CHEN Kaiyuan, LIU Min, LIANG Wannian. The Construction of Assessment Index System of Artificial Intelligence General Practitioner [J]. Chinese General Practice, 2025, 28(22): 2705-2711. |
[5] | WANG Shuang, WU Shufa, LING Yao, TAN Xiwei, CAO Rudai, ZENG Huiting, KONG Danli, DING Yuanlin, YU Haibing. Metabolomics Based Mediating Role of Non-lipid Metabolites in the Relationship between Obesity and Diabetic Retinopathy: a Mendelian Randomization Study [J]. Chinese General Practice, 2025, 28(21): 2625-2634. |
[6] | WANG Songzhu, YAO Yi, ZHOU Yiheng, ZHAO Jiaxi, YANG Rong, ZHAO Qian, ZHANG Rui, DAI Hua, LI Dongze, LIAO Xiaoyang, YANG Hui. Analysis of Research Hotspots and Development Trends of General Practice in the Last Five Years: a Visualization Analysis Based on CiteSpace [J]. Chinese General Practice, 2025, 28(19): 2330-2337. |
[7] | YAN Wenxin, LIU Jue, LIANG Wannian. DeepSeek Empowers General Medicine: Potential Application and Prospect [J]. Chinese General Practice, 2025, 28(17): 2065-2069. |
[8] | LI Yiting, TU Wenjing, YIN Tingting, MEI Ziqi, ZHANG Sumin, WANG Meng, XU Guihua. Application of Artificial Intelligence in Nutritional Management of Patients with Inflammatory Bowel Disease: a Scoping Review [J]. Chinese General Practice, 2025, 28(14): 1709-1716. |
[9] | GE Qiong, HU Jiakang, YU Yuqi, LAI Wenwen, LUO Shiwen, LU Quqin. Bibliometric Analysis of RNA-seq Technology in Liver Cancer Research [J]. Chinese General Practice, 2025, 28(12): 1473-1478. |
[10] | WANG Ganhong, ZHANG Zihao, XI Meijuan, XIA Kaijian, ZHOU Yanting, CHEN Jian. Construction of an Artificial Intelligence Model and Application for an Automatic Recognition of Traditional Chinese Medicine Herbals Based on Convolutional Neural Networks [J]. Chinese General Practice, 2025, 28(09): 1128-1136. |
[11] | CHENG Qi, YU Wenbing, LI Keke, ZUO You, JIAO Qianxin, LIU Xinhao, GAO Lili. A CiteSpace-based Analysis of Hotspots and Cutting-edge Trends in Mental Health among Middle School Students Research [J]. Chinese General Practice, 2025, 28(07): 853-862. |
[12] | Tsinghua University Vanke School of Public Health, Peking University School of Public Health, Chinese Association of General Practitioners of Chinese Medical Doctor Association. Chinese Expert Consensus on Artificial Intelligence General Practitioner (AIGP) [J]. Chinese General Practice, 2025, 28(02): 135-142. |
[13] | ZHANG Xuan, ZHANG Fei, LI Minglin, WANG Jiahe. Application and Challenges of Intelligent Robots in Grassroots Chronic Disease Management [J]. Chinese General Practice, 2025, 28(01): 7-12. |
[14] | WANG Shuyun, LIANG Xia, LI Xia, LIN Lin, FENG Qiming, HUANG Zhaoquan. The Research Hotspots and Frontiers of County-level Medical Community in China [J]. Chinese General Practice, 2025, 28(01): 83-88. |
[15] | WANG Zhenni, XU Yueping, XIA Kaijian, XU Xiaodan, GU Lihua. Construction of an Artificial Intelligence-assisted System for Automatic Detection of Pressure Injury Based on the YOLO Neural Network [J]. Chinese General Practice, 2024, 27(36): 4582-4590. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||