Chinese General Practice ›› 2022, Vol. 25 ›› Issue (17): 2115-2120.DOI: 10.12114/j.issn.1007-9572.2022.0005
Special Issue: 数智医疗最新文章合辑
• Article • Previous Articles Next Articles
Received:
2021-12-21
Revised:
2022-02-14
Published:
2022-04-28
Online:
2022-04-28
Contact:
Jingyu LIU
About author:
通讯作者:
刘敬禹
作者简介:
基金资助:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chinagp.net/EN/10.12114/j.issn.1007-9572.2022.0005
项目 | 例数 | 年龄( | 性别〔n(%)〕 | 吸烟史〔n(%)〕 | 癌症家族史〔n(%)〕 | 结节单、多发〔n(%)〕 | 结节平均直径( | 结节体积( | 实性占比( | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
男 | 女 | 有 | 无 | 有 | 无 | 单发 | 多发 | ||||||
实性结节组 | 82 | 54.7±12.9 | 46(56.1) | 36(43.9) | 33(40.2) | 49(59.8) | 30(36.6) | 52(63.4) | 28(34.1) | 54(65.9) | 1.1±0.5 | 881.2±460.5 | 91.0±11.3 |
GGN组 | 93 | 55.6±11.6 | 57(61.3) | 36(38.7) | 31(33.3) | 62(66.7) | 33(35.5) | 60(64.5) | 32(34.4) | 61(65.6) | 1.2±0.5 | 793.0±456.5 | 21.8±19.7 |
检验统计量值 | -0.496a | 0.485 | 0.897 | 0.120 | 0.001 | -0.327a | 1.271a | 28.360a | |||||
P值 | 0.621 | 0.486 | 0.344 | 0.729 | 0.971 | 0.744 | 0.206 | <0.001 | |||||
项目 | 结节部位〔n(%)〕 | 恶性概率〔n(%)〕 | 表面征象〔n(%)〕 | 平均CT值( | 偏度〔M(P 25,P 75)〕 | 峰度( | |||||||
右肺上叶 | 右肺中叶 | 右肺下叶 | 左肺上叶 | 左肺下叶 | 中危 | 高危 | 有 | 无 | |||||
实性结节组 | 22(26.8) | 11(13.4) | 16(19.5) | 25(30.5) | 8(9.8) | 40(48.8) | 42(51.2) | 40(48.8) | 42(51.2) | -222.8±216.8 | 0.6(-0.1,1.4) | 2.3±0.7 | |
GGN组 | 35(37.6) | 8(8.6) | 12(12.9) | 26(28.0) | 12(12.9) | 44(47.3) | 49(52.7) | 45(48.4) | 48(51.6) | -600.2±191.1 | 0.3(-0.1,1.1) | 2.3±0.8 | |
检验统计量值 | 4.155 | 0.038 | 0.003 | 12.239a | 1.285b | -0.639a | |||||||
P值 | 0.385 | 0.846 | 0.959 | <0.001 | 0.201 | 0.524 |
Table 1 Comparison of clinical data and imaging findings between patients with solid and ground-glass pulmonary nodules
项目 | 例数 | 年龄( | 性别〔n(%)〕 | 吸烟史〔n(%)〕 | 癌症家族史〔n(%)〕 | 结节单、多发〔n(%)〕 | 结节平均直径( | 结节体积( | 实性占比( | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
男 | 女 | 有 | 无 | 有 | 无 | 单发 | 多发 | ||||||
实性结节组 | 82 | 54.7±12.9 | 46(56.1) | 36(43.9) | 33(40.2) | 49(59.8) | 30(36.6) | 52(63.4) | 28(34.1) | 54(65.9) | 1.1±0.5 | 881.2±460.5 | 91.0±11.3 |
GGN组 | 93 | 55.6±11.6 | 57(61.3) | 36(38.7) | 31(33.3) | 62(66.7) | 33(35.5) | 60(64.5) | 32(34.4) | 61(65.6) | 1.2±0.5 | 793.0±456.5 | 21.8±19.7 |
检验统计量值 | -0.496a | 0.485 | 0.897 | 0.120 | 0.001 | -0.327a | 1.271a | 28.360a | |||||
P值 | 0.621 | 0.486 | 0.344 | 0.729 | 0.971 | 0.744 | 0.206 | <0.001 | |||||
项目 | 结节部位〔n(%)〕 | 恶性概率〔n(%)〕 | 表面征象〔n(%)〕 | 平均CT值( | 偏度〔M(P 25,P 75)〕 | 峰度( | |||||||
右肺上叶 | 右肺中叶 | 右肺下叶 | 左肺上叶 | 左肺下叶 | 中危 | 高危 | 有 | 无 | |||||
实性结节组 | 22(26.8) | 11(13.4) | 16(19.5) | 25(30.5) | 8(9.8) | 40(48.8) | 42(51.2) | 40(48.8) | 42(51.2) | -222.8±216.8 | 0.6(-0.1,1.4) | 2.3±0.7 | |
GGN组 | 35(37.6) | 8(8.6) | 12(12.9) | 26(28.0) | 12(12.9) | 44(47.3) | 49(52.7) | 45(48.4) | 48(51.6) | -600.2±191.1 | 0.3(-0.1,1.1) | 2.3±0.8 | |
检验统计量值 | 4.155 | 0.038 | 0.003 | 12.239a | 1.285b | -0.639a | |||||||
P值 | 0.385 | 0.846 | 0.959 | <0.001 | 0.201 | 0.524 |
变量 | 赋值 |
---|---|
肺结节增长 | 增长=1,无增长=0 |
年龄 | 实测值 |
性别 | 男=1,女=0 |
吸烟史 | 有=1,无=0 |
癌症家族史 | 有=1,无=0 |
结节类型 | 多发=1,单发=0 |
结节平均直径 | 实测值 |
结节体积 | 实测值 |
实性占比 | 实测值 |
结节部位 | 右肺上叶=1,右肺中叶=2,右肺下叶=3,左肺上叶=4,左肺下叶=5 |
恶性概率 | 高危=1,中危=0 |
表面征象 | 有=1,无=0 |
平均CT值 | 实测值 |
偏度 | 实测值 |
峰度 | 实测值 |
Table 2 Cox proportional risk regression analysis variable assignment table of influencing factors of pulmonary nodule growth
变量 | 赋值 |
---|---|
肺结节增长 | 增长=1,无增长=0 |
年龄 | 实测值 |
性别 | 男=1,女=0 |
吸烟史 | 有=1,无=0 |
癌症家族史 | 有=1,无=0 |
结节类型 | 多发=1,单发=0 |
结节平均直径 | 实测值 |
结节体积 | 实测值 |
实性占比 | 实测值 |
结节部位 | 右肺上叶=1,右肺中叶=2,右肺下叶=3,左肺上叶=4,左肺下叶=5 |
恶性概率 | 高危=1,中危=0 |
表面征象 | 有=1,无=0 |
平均CT值 | 实测值 |
偏度 | 实测值 |
峰度 | 实测值 |
变量 | 单因素Cox比例风险回归分析 | 多因素Cox比例风险回归分析 | ||
---|---|---|---|---|
HR(95%CI) | P值 | HR(95%CI) | P值 | |
年龄 | 1.016(0.989,1.043) | 0.250 | — | — |
性别 | 0.759(0.380,1.516) | 0.434 | — | — |
吸烟史 | 1.863(0.949,3.659) | 0.071 | — | — |
癌症家族史 | 2.228(1.134,4.381) | 0.020 | — | — |
结节数目 | 1.088(0.530,2.233) | 0.817 | — | — |
结节平均直径 | 4.059(2.282,7.218) | <0.001 | 2.185(1.079,4.425) | 0.030 |
结节体积 | 1.001(1.001,1.002) | <0.001 | 1.001(1.000,1.001) | 0.022 |
实性占比 | 0.987(0.958,1.017) | 0.391 | — | — |
结节部位 | 1.047(0.817,1.341) | 0.717 | — | — |
恶性概率 | 2.559(1.245,5.260) | 0.011 | 2.232(1.036,4.806) | 0.040 |
表面征象 | 2.781(1.354,5.715) | 0.005 | 2.125(1.006,4.489) | 0.048 |
平均CT值 | 1.000(0.999,1.002) | 0.679 | — | — |
偏度 | 0.962(0.693,1.334) | 0.816 | — | — |
峰度 | 1.035(0.655,1.633) | 0.884 | — | — |
Table 3 Univariate and multivariate Cox proportional risk regression analyses of factors associated with the growth of solid pulmonary nodules
变量 | 单因素Cox比例风险回归分析 | 多因素Cox比例风险回归分析 | ||
---|---|---|---|---|
HR(95%CI) | P值 | HR(95%CI) | P值 | |
年龄 | 1.016(0.989,1.043) | 0.250 | — | — |
性别 | 0.759(0.380,1.516) | 0.434 | — | — |
吸烟史 | 1.863(0.949,3.659) | 0.071 | — | — |
癌症家族史 | 2.228(1.134,4.381) | 0.020 | — | — |
结节数目 | 1.088(0.530,2.233) | 0.817 | — | — |
结节平均直径 | 4.059(2.282,7.218) | <0.001 | 2.185(1.079,4.425) | 0.030 |
结节体积 | 1.001(1.001,1.002) | <0.001 | 1.001(1.000,1.001) | 0.022 |
实性占比 | 0.987(0.958,1.017) | 0.391 | — | — |
结节部位 | 1.047(0.817,1.341) | 0.717 | — | — |
恶性概率 | 2.559(1.245,5.260) | 0.011 | 2.232(1.036,4.806) | 0.040 |
表面征象 | 2.781(1.354,5.715) | 0.005 | 2.125(1.006,4.489) | 0.048 |
平均CT值 | 1.000(0.999,1.002) | 0.679 | — | — |
偏度 | 0.962(0.693,1.334) | 0.816 | — | — |
峰度 | 1.035(0.655,1.633) | 0.884 | — | — |
变量 | 单因素Cox比例风险回归分析 | 多因素Cox比例风险回归分析 | ||
---|---|---|---|---|
HR(95%CI) | P值 | HR(95%CI) | P值 | |
年龄 | 0.985(0.958,1.013) | 0.296 | — | — |
性别 | 1.023(0.536,1.949) | 0.946 | — | — |
吸烟史 | 1.877(0.999,3.526) | 0.050 | — | — |
癌症家族史 | 1.023(0.532,1.967) | 0.947 | — | — |
结节数目 | 0.862(0.452,1.645) | 0.653 | — | — |
结节平均直径 | 5.552(2.811,10.964) | <0.001 | 2.458(1.053,5.739) | 0.038 |
结节体积 | 1.001(1.000,1.001) | <0.001 | 1.001(1.000,1.002) | 0.010 |
实性占比 | 1.028(1.012,1.044) | 0.001 | 1.022(1.002,1.041) | 0.030 |
结节部位 | 0.990(0.804,1.218) | 0.922 | — | — |
恶性概率 | 2.813(1.422,5.562) | 0.003 | 2.386(1.174,4.850) | 0.016 |
表面征象 | 3.119(1.578,6.165) | 0.001 | 3.026(1.492,6.136) | 0.002 |
平均CT值 | 1.003(1.001,1.005) | 0.002 | 1.002(1.000,1.003) | 0.045 |
偏度 | 1.521(1.055,2.193) | 0.025 | — | — |
峰度 | 0.968(0.643,1.458) | 0.877 | — | — |
Table 4 Univariate and multivariate Cox proportional risk regression analyses of associated with the growth of ground-glass pulmonary nodules
变量 | 单因素Cox比例风险回归分析 | 多因素Cox比例风险回归分析 | ||
---|---|---|---|---|
HR(95%CI) | P值 | HR(95%CI) | P值 | |
年龄 | 0.985(0.958,1.013) | 0.296 | — | — |
性别 | 1.023(0.536,1.949) | 0.946 | — | — |
吸烟史 | 1.877(0.999,3.526) | 0.050 | — | — |
癌症家族史 | 1.023(0.532,1.967) | 0.947 | — | — |
结节数目 | 0.862(0.452,1.645) | 0.653 | — | — |
结节平均直径 | 5.552(2.811,10.964) | <0.001 | 2.458(1.053,5.739) | 0.038 |
结节体积 | 1.001(1.000,1.001) | <0.001 | 1.001(1.000,1.002) | 0.010 |
实性占比 | 1.028(1.012,1.044) | 0.001 | 1.022(1.002,1.041) | 0.030 |
结节部位 | 0.990(0.804,1.218) | 0.922 | — | — |
恶性概率 | 2.813(1.422,5.562) | 0.003 | 2.386(1.174,4.850) | 0.016 |
表面征象 | 3.119(1.578,6.165) | 0.001 | 3.026(1.492,6.136) | 0.002 |
平均CT值 | 1.003(1.001,1.005) | 0.002 | 1.002(1.000,1.003) | 0.045 |
偏度 | 1.521(1.055,2.193) | 0.025 | — | — |
峰度 | 0.968(0.643,1.458) | 0.877 | — | — |
[1] |
|
[2] |
杨锋,樊军,田周俊逸,等. 人群肺亚实性结节CT筛查及人工智能应用研究初探[J]. 中华胸心血管外科杂志,2020,36(3):145-150. DOI:10.3760/cma.j.cn112434-20191126-00420.
|
[3] |
中华医学会呼吸病学分会肺癌学组,中国肺癌防治联盟专家组.肺结节诊治中国专家共识(2018年版)[J]. 中华结核和呼吸杂志,2018,41(10):763-771. DOI:10.3760/cma.j.issn.1001-0939.2018.10.004.
|
[4] |
盛林丽.基于人工智能CT定量参数预测肺纯磨玻璃结节生长趋势的临床研究[D]. 昆明:昆明医科大学,2021.
|
[5] |
李欣菱,王颖. 人工智能在肺结节检测与诊断中的应用及发展[J]. 新发传染病电子杂志,2019,4(3):185-189. DOI:10.19871/j.cnki.xfcrbzz.2019.03.014.
|
[6] |
马景旭,陈欢,王红. 分析肺部影像人工智能诊断系统鉴别诊断肺结节性质[J]. 临床肺科杂志,2021,26(6):842-846.
|
[7] |
刘娜,赵正凯,邹佳瑜,等. 基于人工智能的胸部CT肺结节检出及良恶性诊断效能评估[J]. CT理论与应用研究,2021,30(6):709-715. DOI:10.15953/j.1004-4140.2021.30.06.06.
|
[8] |
曹孟昆,姜杰,朱晓雷,等. 人工智能肺部结节辅助诊疗系统预测肺结节的良恶性及浸润情况[J]. 中国胸心血管外科临床杂志,2021,28(3):283-287.
|
[9] |
尹泚,毛文杰,李斌,等. 人工智能系统在肺结节检出及良恶性鉴别中的应用研究[J]. 中华胸心血管外科杂志,2020,36(9):553-556. DOI:10.3760/cma.j.cn112434-20200817-00375.
|
[10] |
|
[11] |
中华医学会放射学分会心胸学组. 低剂量螺旋CT肺癌筛查专家共识[J]. 中华放射学杂志,2015,9(5):328-335.
|
[12] |
|
[13] |
|
[14] |
|
[15] |
李甜,李晓东,刘敬禹. 人工智能辅助诊断肺结节的临床价值研究[J]. 中国全科医学,2020,23(7):828-831,836. DOI:10.12114/j.issn.1007-9572.2020.00.052.
|
[16] |
|
[17] |
|
[18] |
范卫杰,张冬. 影像组学及深度学习在肺结节良恶性鉴别诊断中的新理念[J]. 中华肺部疾病杂志:电子版,2021,14(5):549-553.
|
[19] |
张晓菊.《肺结节诊治中国专家共识(2018版)》解读[J]. 中华实用诊断与治疗杂志,2019,33(1):1-3.
|
[20] |
蔡雅倩,张正华,韩丹,等. AI对肺磨玻璃结节筛查及定性的临床应用研究[J]. 放射学实践,2019,34(9):958-962. DOI:10.13609/j.cnki.1000-0313.2019.09.005.
|
[21] |
|
[22] |
张正华,周小君,韩丹,等. 基于AI对磨玻璃密度早期肺癌浸润相关因素Logistic回归分析[J]. 临床放射学杂志,2020,39(10):2120-2123. DOI:10.13437/j.cnki.jcr.2020.10.045.
|
[23] | |
[24] |
|
[25] |
|
[26] |
张世佳,赵静,任胜祥,等. 生物标记物应用于肺癌早期诊断和筛查研究进展[J]. 中华健康管理学杂志,2017,11(4):383-387. DOI:10.3760/cma.j.issn.1674-0815.2017.04.018.
|
[1] | XU Baichuan, WANG Yan, ZHANG Peng, LI Yiting, LIU Feilai, XIE Yang. Research and Analysis of Screening Tools for Chronic Obstructive Pulmonary Disease Comorbidity Lung Cancer [J]. Chinese General Practice, 2025, 28(30): 3847-3852. |
[2] | SHAO Xiaoying, SHAO Jie, ZHU Yan, SHAO Jinling, SHANG Ling, WU Zhenlian, ZHAO Yu, ZHANG Jiacai. Analysis of the Current Status of Iron Deficiency and Factors Affecting Iron Deficiency Anemia among Children Aged 6-36 Months in Guizhou Province [J]. Chinese General Practice, 2025, 28(27): 3368-3374. |
[3] | NIU Ben, ZHU Xiaoqian, YANG Chen, LIANG Wannian, LIU Jue. Evolution and Trends of Domestic and International Research Hotspots in the Field of Large Language Models in Medicine Based on CiteSpace [J]. Chinese General Practice, 2025, 28(25): 3200-3208. |
[4] | WANG Hui, HU Yinhuan, FENG Xiandong, LIU Sha, WANG Yangfan. The Application of Artificial Intelligence in Psychological Interventions: Effectiveness, Challenges, and Prospects [J]. Chinese General Practice, 2025, 28(25): 3209-3216. |
[5] | PAN Qi, REN Jingjing, MA Fanghui, HU Mengjie. Survey of General Practitioners' Cognition and Needs for AI Assisted Diagnosis and Treatment Systems [J]. Chinese General Practice, 2025, 28(25): 3127-3136. |
[6] | ZHOU Qian, WU Xiaomin, WANG Baohua, YAN Ruohan, YU Miao, WU Jing. Study on Nomogram Prediction Model for Risk of Gastric Cancer [J]. Chinese General Practice, 2025, 28(23): 2870-2877. |
[7] | CHEN Linfeng, WANG Chenxia, HE Jinpeng. Impact of Regular Outpatient Follow-up and Off-site App Engagement on Metabolic Indicators in Type 2 Diabetes Mellitus Patients under the Shared Care Model [J]. Chinese General Practice, 2025, 28(22): 2762-2768. |
[8] | ZHAO Yali, LU Xiaoqin, LIU Jue, ZHANG Yifan, ZHU Zuyi, CHEN Kaiyuan, LIU Min, LIANG Wannian. The Construction of Assessment Index System of Artificial Intelligence General Practitioner [J]. Chinese General Practice, 2025, 28(22): 2705-2711. |
[9] | GUO Shengteng, ZHANG Fenfen, WAN Di, YU Dongmei, WANG Qinghua. Risk Factors for Severe Acute Pancreatitis Complicated with Acute Lung Injury: a Meta-analysis [J]. Chinese General Practice, 2025, 28(20): 2546-2554. |
[10] | YAN Wenxin, LIU Jue, LIANG Wannian. DeepSeek Empowers General Medicine: Potential Application and Prospect [J]. Chinese General Practice, 2025, 28(17): 2065-2069. |
[11] | LI Yiting, TU Wenjing, YIN Tingting, MEI Ziqi, ZHANG Sumin, WANG Meng, XU Guihua. Application of Artificial Intelligence in Nutritional Management of Patients with Inflammatory Bowel Disease: a Scoping Review [J]. Chinese General Practice, 2025, 28(14): 1709-1716. |
[12] | MA Guifen, ZHANG Qian, SUN Jing. Interpretation of the Key Updates in the Latest Version of 2024 NCCN Clinical Practice Guidelines for Gastric Cancer [J]. Chinese General Practice, 2025, 28(14): 1681-1688. |
[13] | WANG Xiaoyu, FENG Zhenzhen, WANG Jun, GUO Xiaochuan, LI Jiansheng. Risk Factors for Acute Kidney Injury in Acute Respiratory Distress Syndrome: a Systematic Review [J]. Chinese General Practice, 2025, 28(12): 1527-1537. |
[14] | WANG Ganhong, ZHANG Zihao, XI Meijuan, XIA Kaijian, ZHOU Yanting, CHEN Jian. Construction of an Artificial Intelligence Model and Application for an Automatic Recognition of Traditional Chinese Medicine Herbals Based on Convolutional Neural Networks [J]. Chinese General Practice, 2025, 28(09): 1128-1136. |
[15] | LIAO Xingyu, TIAN Siyu, CHEN Min. The Disease Burden, Risk Factors and Predictive Analysis of Early-onset Colorectal Cancer of Different Genders between China and the World from 1990 to 2021 [J]. Chinese General Practice, 2025, 28(08): 1004-1011. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||