[1] |
TOH M R, WONG E Y T, WONG S H,et al. Global epidemiology and genetics of hepatocellular carcinoma[J]. Gastroenterology, 2023, 164(5):766-782. DOI: 10.1053/j.gastro.2023.01.033.
|
[2] |
SUNG H, FERLAY J, SIEGEL R L,et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. DOI: 10.3322/caac.21660.
|
[3] |
SIM Y K, CHONG M C, GANDHI M,et al. Real-world data on the diagnosis,treatment,and management of hepatocellular carcinoma in the Asia-Pacific:the INSIGHT study[J]. Liver Cancer, 2023, 13(3):298-313. DOI: 10.1159/000534513.
|
[4] |
中华人民共和国国家卫生健康委员会医政司. 原发性肝癌诊疗指南(2024年版)[J]. 协和医学杂志,2024,15(3):532-559.
|
[5] |
YEO Y H, LEE Y T, TSENG H R,et al. Alpha-fetoprotein:past,present,and future[J]. Hepatol Commun, 2024, 8(5):e0422. DOI: 10.1097/HC9.0000000000000422.
|
[6] |
NICHOLSON J K, LINDON J C, HOLMES E. 'Metabonomics':understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 1999, 29(11):1181-1189. DOI: 10.1080/004982599238047.
|
[7] |
|
[8] |
|
[9] |
|
[10] |
LIU J K, GENG W, SUN H Y,et al. Integrative metabolomic characterisation identifies altered portal vein serum metabolome contributing to human hepatocellular carcinoma[J]. Gut, 2022, 71(6):1203-1213. DOI: 10.1136/gutjnl-2021-325189.
|
[11] |
CAPONIGRO V,TORNESELLO A L,MERCIAI F,et al. Integrated plasma metabolomics and lipidomics profiling highlights distinctive signature of hepatocellular carcinoma in HCV patients[J]. J Transl Med,2023,21(1):918.
|
[12] |
OZAWA H,HIRAYAMA A,SHOJI F,et al. Comprehensive dipeptide analysis revealed cancer-specific profile in the liver of patients with hepatocellular carcinoma and hepatitis[J]. Metabolites,2020,10(11):442.
|
[13] |
|
[14] |
解修峰,孙艳,赵晓航. 肝细胞癌尿代谢组学初步研究[J]. 中华肿瘤杂志,2022,44(3):252-259.
|
[15] |
HERSHBERGER C E, RODARTE A I, SIDDIQI S,et al. Salivary metabolites are promising non-invasive biomarkers of hepatocellular carcinoma and chronic liver disease[J]. Liver Cancer Int, 2021, 2(2):33-44. DOI: 10.1002/lci2.25.
|
[16] |
LIANG W Z, ZHAO Y, MENG Q X,et al. The role of long non-coding RNA in hepatocellular carcinoma[J]. Aging, 2024, 16(4):4052-4073. DOI: 10.18632/aging.205523.
|
[17] |
SAADH M J, HUSSAIN Q M, ALAZZAWI T S,et al. MicroRNA as key players in hepatocellular carcinoma:insights into their role in metastasis[J]. Biochem Genet, 2024. DOI: 10.1007/s10528-024-10897-0.
|
[18] |
SHETTI D, MALLELA V R, YE W J,et al. Emerging role of circulating cell-free RNA as a non-invasive biomarker for hepatocellular carcinoma[J]. Crit Rev Oncol Hematol, 2024, 200:104391. DOI: 10.1016/j.critrevonc.2024.104391.
|
[19] |
FARES S,WEHRLE C J,HONG H N,et al. Emerging and clinically accepted biomarkers for hepatocellular carcinoma[J]. Cancers,2024,16(8):1453.
|
[20] |
ZHANG X, WU L N, LI X Q,et al. Whether the Golgi protein 73 could be a diagnostic serological marker in hepatocellular carcinoma:a meta analysis[J]. BMC Gastroenterol, 2023, 23(1):85. DOI: 10.1186/s12876-023-02685-8.
|
[21] |
LI Z J, MOU L S, GAO H B,et al. Diagnostic accuracy of serum dickkopf-1 protein in diagnosis hepatocellular carcinoma:an updated meta-analysis[J]. Medicine, 2019, 98(32):e16725. DOI: 10.1097/MD.0000000000016725.
|
[22] |
JIANG D L, ZHANG Y S, WANG Y N,et al. Diagnostic accuracy and prognostic significance of glypican-3 in hepatocellular carcinoma:a systematic review and meta-analysis[J]. Front Oncol, 2022, 12:1012418. DOI: 10.3389/fonc.2022.1012418.
|
[23] |
FENG J,LI J J,WU L W,et al. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma[J]. J Exp Clin Cancer Res,2020,39(1):126.
|
[24] |
PAUL B, LEWINSKA M, ANDERSEN J B. Lipid alterations in chronic liver disease and liver cancer[J]. JHEP Rep, 2022, 4(6):100479. DOI: 10.1016/j.jhepr.2022.100479.
|
[25] |
FOGLIA B,BELTRÀ M,SUTTI S,et al. Metabolic reprogramming of HCC:a new microenvironment for immune responses[J]. Int J Mol Sci,2023,24(8):7463.
|
[26] |
ERICKSEN R E, LIM S L, MCDONNELL E,et al. Loss of BCAA catabolism during carcinogenesis enhances mTORC1 activity and promotes tumor development and progression[J]. Cell Metab, 2019, 29(5):1151-1165.e6. DOI: 10.1016/j.cmet.2018.12.020.
|
[27] |
SUN J Q, DING J, SHEN Q S,et al. Decreased propionyl-CoA metabolism facilitates metabolic reprogramming and promotes hepatocellular carcinoma[J]. J Hepatol, 2023, 78(3):627-642. DOI: 10.1016/j.jhep.2022.11.017.
|
[28] |
SUN R Q, ZHANG Z Y, BAO R X,et al. Loss of SIRT5 promotes bile acid-induced immunosuppressive microenvironment and hepatocarcinogenesis[J]. J Hepatol, 2022, 77(2):453-466. DOI: 10.1016/j.jhep.2022.02.030.
|
[29] |
XIA P, ZHANG H, LU H F,et al. METTL5 stabilizes c-Myc by facilitating USP5 translation to reprogram glucose metabolism and promote hepatocellular carcinoma progression[J]. Cancer Commun, 2023, 43(3):338-364. DOI: 10.1002/cac2.12403.
|
[30] |
PEÑUELAS-HARO I, ESPINOSA-SOTELO R, CROSAS-MOLIST E,et al. The NADPH oxidase NOX4 regulates redox and metabolic homeostasis preventing HCC progression[J]. Hepatology, 2023, 78(2):416-433. DOI: 10.1002/hep.32702.
|
[31] |
LI B H, LI Y Z, ZHOU H J,et al. Multiomics identifies metabolic subtypes based on fatty acid degradation allocating personalized treatment in hepatocellular carcinoma[J]. Hepatology, 2024, 79(2):289-306. DOI: 10.1097/HEP.0000000000000553.
|
[32] |
GUO W, YAO X H, LAN S Y,et al. Metabolomics and integrated network pharmacology analysis reveal SNKAF decoction suppresses cell proliferation and induced cell apoptisis in hepatocellular carcinoma via PI3K/Akt/P53/FoxO signaling axis[J]. Chin Med, 2022, 17(1):76. DOI: 10.1186/s13020-022-00628-1.
|
[33] |
|
[34] |
TRIPODI F, BADONE B, VESCOVI M,et al. Methionine supplementation affects metabolism and reduces tumor aggressiveness in liver cancer cells[J]. Cells, 2020, 9(11):2491. DOI: 10.3390/cells9112491.
|
[35] |
XU K D, DING J, ZHOU L F,et al. Smyd2 promotes hepatocellular carcinoma progression by reprogramming glutamine metabolism via c-Myc/GLS1 axis[J]. Cells, 2022, 12(1):25. DOI: 10.3390/cells12010025.
|
[36] |
LUO X Q, ZHENG E Z, WEI L,et al. The fatty acid receptor CD36 promotes HCC progression through activating Src/PI3K/AKT axis-dependent aerobic glycolysis[J]. Cell Death Dis, 2021, 12(4):328. DOI: 10.1038/s41419-021-03596-w.
|
[37] |
WANG L H, ZHU Z, LIANG Q,et al. A novel small molecule glycolysis inhibitor WZ35 exerts anti-cancer effect via metabolic reprogramming[J]. J Transl Med, 2022, 20(1):530. DOI: 10.1186/s12967-022-03758-0.
|
[38] |
NG S S W,JANG G H,KURLAND I J,et al. Plasma metabolomic profiles in liver cancer patients following stereotactic body radiotherapy[J]. EBioMedicine,2020,59:102973.
|
[39] |
|