Chinese General Practice ›› 2025, Vol. 28 ›› Issue (25): 3200-3208.DOI: 10.12114/j.issn.1007-9572.2024.0377
• Smart Healthcare & Health Informatics Study • Previous Articles Next Articles
Received:
2024-08-15
Revised:
2024-09-10
Published:
2025-09-05
Online:
2025-07-24
Contact:
LIANG Wannian, LIU Jue
通讯作者:
梁万年, 刘珏
作者简介:
作者贡献:
牛奔负责确定论文选题、文献筛选核对、论文撰写及修改、经费支持;朱晓倩、杨辰负责文献检索、筛选和去重,以及文献数据分析;刘珏负责图表制作、论文修改及质控、经费支持;梁万年负责论文选题、质控、指导及修改,并对文章整体负责。
基金资助:
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chinagp.net/EN/10.12114/j.issn.1007-9572.2024.0377
检索类型 | 检索词 |
---|---|
英文检索式 | (TS=("medical" O R "medical treatment" O R "medicine" O R "health care" O R "medical service" O R "medicare" O R "medical cure" O R "health" O R "treatment" O R "treat" O R "medical activities" O R "medicine art" O R "medical practice" O R "medical services" O R "medical system" O R "medical enterprise" O R "medical management" O R "medication" O R "medical history" O R "health services" O R "medical process" O R "medical organization" O R "medical therapy" O R "medical health" O R "medical science" O R "medical institution" O R "medicine treatment" O R "clinical care" O R "medical service care" O R "medical activity" O R "medical contingent" O R "medical institutions" O R "healing" O R "medical problems" O R "medical enterprises" O R "medical technology" O R "health & medical care" O R "medical service practice" O R "medical insurance" O R "medical assistance" O R "medical care" O R "pharmacy" O R "medicinal" O R "clinical" )AND TS=("large language model" O R "language model" O R "linguistic model" O R "language models" O R "language modeling" O R "language module" O R "language mode" O R "chinese language model" O R "language level")) |
中文检索式 | (TS=("医疗+医学+医疗卫生")AND TS=("大语言模型+生成式语言模型+GPT模型+BERT模型+超级语言模型")) |
Table 1 Search terms for large language models in the field of medical in English and Chinese
检索类型 | 检索词 |
---|---|
英文检索式 | (TS=("medical" O R "medical treatment" O R "medicine" O R "health care" O R "medical service" O R "medicare" O R "medical cure" O R "health" O R "treatment" O R "treat" O R "medical activities" O R "medicine art" O R "medical practice" O R "medical services" O R "medical system" O R "medical enterprise" O R "medical management" O R "medication" O R "medical history" O R "health services" O R "medical process" O R "medical organization" O R "medical therapy" O R "medical health" O R "medical science" O R "medical institution" O R "medicine treatment" O R "clinical care" O R "medical service care" O R "medical activity" O R "medical contingent" O R "medical institutions" O R "healing" O R "medical problems" O R "medical enterprises" O R "medical technology" O R "health & medical care" O R "medical service practice" O R "medical insurance" O R "medical assistance" O R "medical care" O R "pharmacy" O R "medicinal" O R "clinical" )AND TS=("large language model" O R "language model" O R "linguistic model" O R "language models" O R "language modeling" O R "language module" O R "language mode" O R "chinese language model" O R "language level")) |
中文检索式 | (TS=("医疗+医学+医疗卫生")AND TS=("大语言模型+生成式语言模型+GPT模型+BERT模型+超级语言模型")) |
英文关键词 | 中文关键词 | ||||||||
---|---|---|---|---|---|---|---|---|---|
序号 | 频次(次) | 关键词 | 中心性 | 年份(年) | 序号 | 频次(次) | 关键词 | 中心性 | 年份(年) |
1 | 435 | artificial intelligence | 0.10 | 2023 | 1 | 18 | 深度学习 | 0.27 | 2019 |
2 | 262 | large language models | 0.13 | 2023 | 2 | 12 | 人工智能 | 0.13 | 2021 |
3 | 163 | large language model | 0 | 2023 | 3 | 8 | 知识图谱 | 0.01 | 2021 |
4 | 115 | natural language processing | 0.14 | 2023 | 4 | 4 | 实体识别 | 0.06 | 2023 |
5 | 81 | machine learning | 0 | 2023 | 5 | 4 | 电子病历 | 0.05 | 2021 |
6 | 60 | medical education | 0.04 | 2023 | 6 | 4 | 循证医学 | 0.03 | 2021 |
7 | 40 | generative ai | 0.01 | 2023 | 7 | 4 | 医疗问答 | 0.01 | 2022 |
8 | 35 | chatgpt | 0.02 | 2023 | 8 | 4 | 文献分类 | 0 | 2020 |
9 | 32 | language model | 0.18 | 2019 | 9 | 3 | 机器学习 | 0.05 | 2018 |
10 | 32 | deep learning | 0.01 | 2023 | 10 | 3 | 医疗领域 | 0.01 | 2023 |
Table 2 Top 10 high-frequency keywords in the field of medical large language models
英文关键词 | 中文关键词 | ||||||||
---|---|---|---|---|---|---|---|---|---|
序号 | 频次(次) | 关键词 | 中心性 | 年份(年) | 序号 | 频次(次) | 关键词 | 中心性 | 年份(年) |
1 | 435 | artificial intelligence | 0.10 | 2023 | 1 | 18 | 深度学习 | 0.27 | 2019 |
2 | 262 | large language models | 0.13 | 2023 | 2 | 12 | 人工智能 | 0.13 | 2021 |
3 | 163 | large language model | 0 | 2023 | 3 | 8 | 知识图谱 | 0.01 | 2021 |
4 | 115 | natural language processing | 0.14 | 2023 | 4 | 4 | 实体识别 | 0.06 | 2023 |
5 | 81 | machine learning | 0 | 2023 | 5 | 4 | 电子病历 | 0.05 | 2021 |
6 | 60 | medical education | 0.04 | 2023 | 6 | 4 | 循证医学 | 0.03 | 2021 |
7 | 40 | generative ai | 0.01 | 2023 | 7 | 4 | 医疗问答 | 0.01 | 2022 |
8 | 35 | chatgpt | 0.02 | 2023 | 8 | 4 | 文献分类 | 0 | 2020 |
9 | 32 | language model | 0.18 | 2019 | 9 | 3 | 机器学习 | 0.05 | 2018 |
10 | 32 | deep learning | 0.01 | 2023 | 10 | 3 | 医疗领域 | 0.01 | 2023 |
聚类 | 国际 | 聚类 | 国内 |
---|---|---|---|
#0 | care | #0 | 人工智能 |
#1 | models | #1 | 实体识别 |
#2 | large language models(llms) | #2 | 深度学习 |
#3 | electronic health record | #3 | 模式识别 |
#4 | evidence-based medicine | #4 | 知识图谱 |
#5 | large language model | ||
#6 | deep learning | ||
#7 | language models | ||
#8 | forensic ai | ||
#9 | chatbots | ||
#10 | ethics-medical | ||
#11 | medical question answering | ||
#12 | artificial intelligence | ||
#13 | Llama 2 | ||
#14 | decision support systems |
Table 3 Keyword clustering in the field of medical large language models at home and abroad
聚类 | 国际 | 聚类 | 国内 |
---|---|---|---|
#0 | care | #0 | 人工智能 |
#1 | models | #1 | 实体识别 |
#2 | large language models(llms) | #2 | 深度学习 |
#3 | electronic health record | #3 | 模式识别 |
#4 | evidence-based medicine | #4 | 知识图谱 |
#5 | large language model | ||
#6 | deep learning | ||
#7 | language models | ||
#8 | forensic ai | ||
#9 | chatbots | ||
#10 | ethics-medical | ||
#11 | medical question answering | ||
#12 | artificial intelligence | ||
#13 | Llama 2 | ||
#14 | decision support systems |
关键词 | 年份(年) | 强度 | 开始年份(年) | 结束年份(年) | 2019—2024年 |
---|---|---|---|---|---|
chat generative pre-trained transformer | 2023 | 1.34 | 2023 | 2024 | ▂▂▂▂▃▃ |
transfer learning | 2023 | 1.34 | 2023 | 2024 | ▂▂▂▂▃▃ |
efficacy | 2023 | 1.34 | 2023 | 2024 | ▂▂▂▂▃▃ |
prevalence | 2023 | 1.34 | 2023 | 2024 | ▂▂▂▂▃▃ |
ai chatbot | 2023 | 1.34 | 2023 | 2024 | ▂▂▂▂▃▃ |
cancer | 2023 | 1.28 | 2023 | 2024 | ▂▂▂▂▃▃ |
conversational agents | 2023 | 1.28 | 2023 | 2024 | ▂▂▂▂▃▃ |
privacy | 2023 | 1.00 | 2023 | 2024 | ▂▂▂▂▃▃ |
interventions | 2023 | 1.00 | 2023 | 2024 | ▂▂▂▂▃▃ |
health communication | 2023 | 1.00 | 2023 | 2024 | ▂▂▂▂▃▃ |
anxiety | 2023 | 1.00 | 2023 | 2024 | ▂▂▂▂▃▃ |
people | 2023 | 1.00 | 2023 | 2024 | ▂▂▂▂▃▃ |
united states | 2023 | 1.00 | 2023 | 2024 | ▂▂▂▂▃▃ |
medical ethics | 2023 | 1.00 | 2023 | 2024 | ▂▂▂▂▃▃ |
algorithms | 2023 | 1.00 | 2023 | 2024 | ▂▂▂▂▃▃ |
knowledge | 2023 | 1.00 | 2023 | 2024 | ▂▂▂▂▃▃ |
medical information | 2023 | 1.00 | 2023 | 2024 | ▂▂▂▂▃▃ |
natural language processing(nlp) | 2023 | 1.00 | 2023 | 2024 | ▂▂▂▂▃▃ |
conversational agent | 2023 | 0.92 | 2023 | 2024 | ▂▂▂▂▃▃ |
academic integrity | 2023 | 0.67 | 2023 | 2024 | ▂▂▂▂▃▃ |
Table 4 Top 20 keywords with bursts in studies regarding medical large language models in English
关键词 | 年份(年) | 强度 | 开始年份(年) | 结束年份(年) | 2019—2024年 |
---|---|---|---|---|---|
chat generative pre-trained transformer | 2023 | 1.34 | 2023 | 2024 | ▂▂▂▂▃▃ |
transfer learning | 2023 | 1.34 | 2023 | 2024 | ▂▂▂▂▃▃ |
efficacy | 2023 | 1.34 | 2023 | 2024 | ▂▂▂▂▃▃ |
prevalence | 2023 | 1.34 | 2023 | 2024 | ▂▂▂▂▃▃ |
ai chatbot | 2023 | 1.34 | 2023 | 2024 | ▂▂▂▂▃▃ |
cancer | 2023 | 1.28 | 2023 | 2024 | ▂▂▂▂▃▃ |
conversational agents | 2023 | 1.28 | 2023 | 2024 | ▂▂▂▂▃▃ |
privacy | 2023 | 1.00 | 2023 | 2024 | ▂▂▂▂▃▃ |
interventions | 2023 | 1.00 | 2023 | 2024 | ▂▂▂▂▃▃ |
health communication | 2023 | 1.00 | 2023 | 2024 | ▂▂▂▂▃▃ |
anxiety | 2023 | 1.00 | 2023 | 2024 | ▂▂▂▂▃▃ |
people | 2023 | 1.00 | 2023 | 2024 | ▂▂▂▂▃▃ |
united states | 2023 | 1.00 | 2023 | 2024 | ▂▂▂▂▃▃ |
medical ethics | 2023 | 1.00 | 2023 | 2024 | ▂▂▂▂▃▃ |
algorithms | 2023 | 1.00 | 2023 | 2024 | ▂▂▂▂▃▃ |
knowledge | 2023 | 1.00 | 2023 | 2024 | ▂▂▂▂▃▃ |
medical information | 2023 | 1.00 | 2023 | 2024 | ▂▂▂▂▃▃ |
natural language processing(nlp) | 2023 | 1.00 | 2023 | 2024 | ▂▂▂▂▃▃ |
conversational agent | 2023 | 0.92 | 2023 | 2024 | ▂▂▂▂▃▃ |
academic integrity | 2023 | 0.67 | 2023 | 2024 | ▂▂▂▂▃▃ |
关键词 | 年份(年) | 强度 | 开始年份(年) | 结束年份(年) | 2017—2024年 |
---|---|---|---|---|---|
对抗训练 | 2022 | 0.48 | 2022 | 2024 | ▂▂▂▂▂▃▃▃ |
人工智能 | 2021 | 0.72 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
医疗领域 | 2023 | 0.52 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
药物发现 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
中文医学 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
问答系统 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
疾病诊断 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
预训练 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
模块分解 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
复杂系统 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
应用 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
机器翻译 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
护理研究 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
智能问答 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
chip-cdn 2021 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
重症医学 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
特征提取 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
医学伦理 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
信息提取 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
居家健康 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
Table 5 Top 20 keywords with bursts in studies regarding medical large language models in Chinese
关键词 | 年份(年) | 强度 | 开始年份(年) | 结束年份(年) | 2017—2024年 |
---|---|---|---|---|---|
对抗训练 | 2022 | 0.48 | 2022 | 2024 | ▂▂▂▂▂▃▃▃ |
人工智能 | 2021 | 0.72 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
医疗领域 | 2023 | 0.52 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
药物发现 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
中文医学 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
问答系统 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
疾病诊断 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
预训练 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
模块分解 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
复杂系统 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
应用 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
机器翻译 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
护理研究 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
智能问答 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
chip-cdn 2021 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
重症医学 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
特征提取 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
医学伦理 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
信息提取 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
居家健康 | 2023 | 0.41 | 2023 | 2024 | ▂▂▂▂▂▂▃▃ |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
管立本,李实. 融合多粒度语义信息和知识图谱的中文医疗问答匹配模型[J]. 计算机工程与应用,2024,60(14):152-161. DOI:10.3778/j.issn.1002-8331.2305-0453.
|
[6] |
乔凯,陈可佳,陈景强. 基于知识图谱与关键词注意机制的中文医疗问答匹配方法[J]. 模式识别与人工智能,2021,34(8):733-741. DOI:10.16451/j.cnki.issn1003-6059.202108006.
|
[7] |
王润周,张新生. 基于混合动态掩码与多策略融合的医疗知识图谱问答[J]. 计算机科学与探索,2024 ,18 (10):2770-2786. DOI:10.3969/j.issn.1671-3982.2021.11.001.
|
[8] |
吴宗友,白昆龙,杨林蕊,等. 电子病历文本挖掘研究综述[J]. 计算机研究与发展,2021,58(3):513-527. DOI:10.7544/issn1000-1239.2021.20200402.
|
[9] | |
[10] |
梁立荣,李长伟,沈晔,等. 基于层叠条件随机场模型的电子病历文本信息抽取[J]. 计算机应用与软件,2019,36(10):47-54,112. DOI:10.3969/j.issn.1000-386x.2019.10.009.
|
[11] |
吕学强,张剑,穆天杨,等. 嵌入知识语义的医疗领域对话系统[J]. 计算机工程与设计,2023,44(12):3794-3799. DOI:10.16208/j.issn1000-7024.2023.12.037.
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
罗华宇,许敏,曾朝蓉,等. ChatGPT在护理领域中应用的前景与挑战[J]. 中华护理教育,2023,20(12):1520-1523. DOI:10.3761/j.issn.1672-9234.2023.12.019.
|
[28] |
施强慧,张子凡,胡博,等. 深度学习与人工智能在颈腰椎退变性疾病诊断及治疗中的应用研究进展[J]. 解放军医学杂志,2021,46(10):1034-1039. DOI:10.11855/j.issn.0577-7402.2021.10.13.
|
[29] |
徐璐璐,洪贇,叶鹰. ChatGPT及GPT类技术的医学信息学应用前景探讨[J]. 情报理论与实践,2023,46(6):38-42. DOI:10.16353/j.cnki.1000-7490.2023.06.006.
|
[30] |
丁文婧. "助手"还是"杀手":用ChatGPT求医问药的风险分析[J]. 医学与哲学,2023,44(23):22-25. DOI:10.12014/j.issn.1002-0772.2023.23.05.
|
[31] |
张忆汝,汤永,朱敏,等. 基于自然语言处理和深度学习的急性呼吸道传染病早期识别模型的构建[J]. 中华医院感染学杂志,2024(15):2394-2400. DOI:11.3436.r.20240722.1302.062.
|
[32] |
梁文桐,朱艳辉,詹飞,等. 基于深度学习多模型融合的医疗命名实体识别[J]. 计算机应用与软件,2022,39(10):162-168,229. DOI:10.3969/j.issn.1000-386x.2022.10.025.
|
[33] |
席运江,李曼,邓雨珊,等. 中文在线医疗社区问答内容知识图谱构建研究[J]. 图书情报工作,2024,68(4):124-136. DOI:10.13266/j.issn.0252-3116.2023.24.010.
|
[34] |
[1] | CHU Yijing, YAN Yuge, GU Jie, XI Biao, ZHU Shanzhu, HUANG Jiaoling. Analysis of Factors Influencing the Retention Intention of Primary Healthcare Workers in China: a Comparison Based on Urban-rural Differences [J]. Chinese General Practice, 2025, 28(25): 3161-3168. |
[2] | TANG Shangfeng, HUANG Yangzhen, ZHENG Yanxi, PAN Yangyang, XIONG Zhongbao, QING Hua, SONG Jia, WEI Yilin, DONG Heng, WANG Chunying, CHEN Manwei, ZHANG Kangkang. Specification for the Integration of Healthcare and Prevention Services in Diabetes at the Primary Level [J]. Chinese General Practice, 2025, 28(25): 3096-3103. |
[3] | TANG Shangfeng, HUANG Yangzhen, PAN Yangyang, ZHENG Yanxi, XIONG Zhongbao, ZHANG Kangkang, SONG Jia, WEI Yilin, WANG Chunying, DONG Heng, CHEN Manwei, QING Hua. Specification for the Integration of Healthcare and Prevention Services in Hypertension at the Primary Level [J]. Chinese General Practice, 2025, 28(25): 3089-3095. |
[4] | WANG Hui, HU Yinhuan, FENG Xiandong, LIU Sha, WANG Yangfan. The Application of Artificial Intelligence in Psychological Interventions: Effectiveness, Challenges, and Prospects [J]. Chinese General Practice, 2025, 28(25): 3209-3216. |
[5] | PAN Qi, REN Jingjing, MA Fanghui, HU Mengjie. Survey of General Practitioners' Cognition and Needs for AI Assisted Diagnosis and Treatment Systems [J]. Chinese General Practice, 2025, 28(25): 3127-3136. |
[6] | SHI Jiarui, WANG Zili, ZHANG Xueqing, SONG Yulei, XU Guihua, BAI Yamei. The Current Status of Initial Cognitive Screening Services in Community-based Cognitive Services Centers in Nanjing [J]. Chinese General Practice, 2025, 28(22): 2784-2790. |
[7] | ZHAO Yali, LU Xiaoqin, LIU Jue, ZHANG Yifan, ZHU Zuyi, CHEN Kaiyuan, LIU Min, LIANG Wannian. The Construction of Assessment Index System of Artificial Intelligence General Practitioner [J]. Chinese General Practice, 2025, 28(22): 2705-2711. |
[8] | DU Qiongliang, LIN Bailang, GUO Honghua. Research Progress and Implications of Group Well-child Care [J]. Chinese General Practice, 2025, 28(21): 2672-2678. |
[9] | WANG Songzhu, YAO Yi, ZHOU Yiheng, ZHAO Jiaxi, YANG Rong, ZHAO Qian, ZHANG Rui, DAI Hua, LI Dongze, LIAO Xiaoyang, YANG Hui. Analysis of Research Hotspots and Development Trends of General Practice in the Last Five Years: a Visualization Analysis Based on CiteSpace [J]. Chinese General Practice, 2025, 28(19): 2330-2337. |
[10] | YAN Wenxin, LIU Jue, LIANG Wannian. DeepSeek Empowers General Medicine: Potential Application and Prospect [J]. Chinese General Practice, 2025, 28(17): 2065-2069. |
[11] | SHEN Xianlei, HE Rongxin, LIANG Wannian. Study on the Configuration and Action Paths of Factors Affecting the Performance of Primary Healthcare Service [J]. Chinese General Practice, 2025, 28(16): 1973-1979. |
[12] | ZENG Yongtian, CHEN Riling, NONG Xueyan, LIU Zhou, LIANG Lizhong, ZHU Zijian. Clinical Research Progress and Challenges of Digital Therapeutics from Screening to Intervention in Autism Spectrum Disorder [J]. Chinese General Practice, 2025, 28(14): 1702-1708. |
[13] | LI Yiting, TU Wenjing, YIN Tingting, MEI Ziqi, ZHANG Sumin, WANG Meng, XU Guihua. Application of Artificial Intelligence in Nutritional Management of Patients with Inflammatory Bowel Disease: a Scoping Review [J]. Chinese General Practice, 2025, 28(14): 1709-1716. |
[14] | GE Qiong, HU Jiakang, YU Yuqi, LAI Wenwen, LUO Shiwen, LU Quqin. Bibliometric Analysis of RNA-seq Technology in Liver Cancer Research [J]. Chinese General Practice, 2025, 28(12): 1473-1478. |
[15] | ZHANG Xiaojuan, LIU Yang, PENG Bo, CAO Xiaolin, YE Yuan, ZHU Kun. Research on Pediatric Construction and Service Provision in Primary Health Institutions [J]. Chinese General Practice, 2025, 28(10): 1228-1235. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||