Chinese General Practice ›› 2021, Vol. 24 ›› Issue (35): 4540-4548.DOI: 10.12114/j.issn.1007-9572.2021.01.404
Special Issue: 肿瘤最新文章合辑
• Monographic Research • Previous Articles
Published:
2021-12-15
Online:
2021-12-15
基金资助:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chinagp.net/EN/10.12114/j.issn.1007-9572.2021.01.404
[1]LONGO L,VANEGAS O C,PATEL M,et al. Maternally transmitted severe glucose 6-phosphate dehydrogenase deficiency is an embryonic lethal[J]. EMBO J,2002,21(16):4229-4239. DOI:10.1093/emboj/cdf426. [2]YANG H C,CHEN T L,WU Y H,et al. Glucose 6-phosphate dehydrogenase deficiency enhances germ cell apoptosis and causes defective embryogenesis in Caenorhabditis elegans[J]. Cell Death Dis,2013,4:e616. DOI:10.1038/cddis.2013.132. [3]TIAN W N,BRAUNSTEIN L D,PANG J,et al. Importance of glucose-6-phosphate dehydrogenase activity for cell growth[J]. J Biol Chem,1998,273(17):10609-10617. DOI:10.1074/jbc.273.17.10609. [4]NóBREGA-PEREIRA S,FERNANDEZ-MARCOS P J,BRIOCHE T,et al. G6PD protects from oxidative damage and improves healthspan in mice[J]. Nat Commun,2016,7:10894. DOI:10.1038/ncomms10894. [5]YANG H C,WU Y H,YEN W C,et al. The redox role of G6PD in cell growth,cell death,and cancer[J]. Cells,2019,8(9):1055. DOI:10.3390/cells8091055. [6]HANAHAN D,WEINBERG R A. Hallmarks of cancer:the next generation[J]. Cell,2011,144(5):646-674. DOI:10.1016/j.cell.2011.02.013. [7]GATENBY R A,GILLIES R J. Why do cancers have high aerobic glycolysis?[J]. Nat Rev Cancer,2004,4(11):891-899. DOI:10.1038/nrc1478. [8]WELLEN K E,HATZIVASSILIOU G,SACHDEVA U M,et al. ATP-citrate lyase links cellular metabolism to histone acetylation[J]. Science,2009,324(5930):1076-1080. DOI:10.1126/science.1164097. [9]FAUBERT B,SOLMONSON A,DEBERARDINIS R. Metabolic reprogramming and cancer progression[J]. Science,2020,368(6487):eaaw5473. DOI:10.1126/science.aaw5473. [10]WARBURG O. On the origin of cancer cells[J]. Science,1956,123(3191):309-314. DOI:10.1126/science.123.3191.309. [11]JIANG P,DU W J,WU M. Regulation of the pentose phosphate pathway in cancer[J]. Protein Cell,2014,5(8):592-602. DOI:10.1007/s13238-014-0082-8. [12]HASHEMY S I,UNGERSTEDT J S,ZAHEDI AVVAL F,et al. Motexafin gadolinium,a tumor-selective drug targeting thioredoxin reductase and ribonucleotide reductase[J]. J Biol Chem,2006,281(16):10691-10697. DOI:10.1074/jbc.M511373200. [13]GANDIN V,FERNANDES A P,RIGOBELLO M P,et al. Cancer cell death induced by phosphine gold(I)compounds targeting thioredoxin reductase[J]. Biochem Pharmacol,2010,79(2):90-101. DOI:10.1016/j. bcp. 2009.07.023. [14]LESCHELLE X,DELPAL S,GOUBERN M,et al. Butyrate metabolism upstream and downstream acetyl-CoA synthesis and growth control of human colon carcinoma cells[J]. Eur J Biochem,2000,267(21):6435-6442. DOI:10.1046/j.1432-1327.2000.01731.x. [15]HAYES J D,DINKOVA-KOSTOVA A T,TEW K D. Oxidative stress in cancer[J]. Cancer Cell,2020,38(2):167-197. DOI:10.1016/j.ccell.2020.06.001. [16]HOLMSTR?M K M,FINKEL T. Cellular mechanisms and physiological consequences of redox-dependent signalling[J]. Nat Rev Mol Cell Biol,2014,15(6):411-421. DOI:10.1038/nrm3801. [17]WELLS P G,BHULLER Y,CHEN C S,et al. Molecular and biochemical mechanisms in teratogenesis involving reactive oxygen species[J]. Toxicol Appl Pharmacol,2005,207(2 suppl):354-366. DOI:10.1016/j.taap.2005.01.061. [18]SABHARWAL S S,SCHUMACKER P T. Mitochondrial ROS in cancer:initiators,amplifiers or an Achilles'heel?[J]. Nat Rev Cancer,2014,14(11):709-721. DOI:10.1038/nrc3803. [19]GORRINI C,HARRIS I S,MAK T W. Modulation of oxidative stress as an anticancer strategy[J]. Nat Rev Drug Discov,2013,12(12):931-947. DOI:10.1038/nrd4002. [20]GOURLAY C W,AYSCOUGH K R. The actin cytoskeleton:a key regulator of apoptosis and ageing?[J]. Nat Rev Mol Cell Biol,2005,6(7):583-589. DOI:10.1038/nrm1682. [21]KRYSKO D V,GARG A D,KACZMAREK A,et al. Immunogenic cell death and DAMPs in cancer therapy[J]. Nat Rev Cancer,2012,12(12):860-875. DOI:10.1038/nrc3380. [22]STOCKWELL B R,FRIEDMANN ANGELI J P,BAYIR H,et al. Ferroptosis:a regulated cell death Nexus linking metabolism,redox biology,and disease[J]. Cell,2017,171(2):273-285. DOI:10.1016/j.cell.2017.09.021. [23]O'SHEA J J,HOLLAND S M,STAUDT L M. JAKs and STATs in immunity,immunodeficiency,and cancer[J]. N Engl J Med,2013,368(2):161-170. DOI:10.1056/NEJMra1202117. [24]BROMBERG J. Stat proteins and oncogenesis[J]. J Clin Invest,2002,109(9):1139-1142. DOI:10.1172/jci15617. [25]HU T,ZHANG C,TANG Q,et al. Variant G6PD levels promote tumor cell proliferation or apoptosis via the STAT3/5 pathway in the human melanoma xenograft mouse model[J]. BMC Cancer,2013,13:251. DOI:10.1186/1471-2407-13-251. [26]ZHANG Q,YANG Z,HAN Q Q,et al. G6PD promotes renal cell carcinoma proliferation through positive feedback regulation of p-STAT3[J]. Oncotarget,2017,8(65):109043-109060. DOI:10.18632/oncotarget. 22566. [27]LI L,LI L,LI W,et al. TAp73-induced phosphofructokinase-1 transcription promotes the Warburg effect and enhances cell proliferation[J]. Nat Commun,2018,9(1):4683. DOI:10.1038/s41467-018-07127-8. [28]AGOSTINI M,ANNICCHIARICO-PETRUZZELLI M,MELINO G,et al. Metabolic pathways regulated by TAp73 in response to oxidative stress[J]. Oncotarget,2016,7(21):29881-29900. DOI:10.18632/oncotarget.8935. [29]JIANG P,DU W J,YANG X L. A critical role of glucose-6-phosphate dehydrogenase in TAp73-mediated cell proliferation[J]. Cell Cycle,2013,12(24):3720-3726. DOI:10.4161/cc.27267. [30]DU W,JIANG P,MANCUSO A,et al. TAp73 enhances the pentose phosphate pathway and supports cell proliferation[J]. Nat Cell Biol,2013,15(8):991-1000. DOI:10.1038/ncb2789. [31]WANG X L,WU G,CAO G X,et al. Zoledronic acid inhibits the pentose phosphate pathway through attenuating the Ras-TAp73-G6PD axis in bladder cancer cells[J]. Mol Med Rep,2015,12(3):4620-4625. DOI:10.3892/mmr.2015.3995. [32]GHERGUROVICH J M,ESPOSITO M,CHEN Z H,et al. Glucose-6-phosphate dehydrogenase is not essential for K-ras-driven tumor growth or metastasis[J]. Cancer Res,2020,80(18):3820-3829. DOI:10.1158/0008-5472.CAN-19-2486. [33]BALUAPURI A,WOLF E,EILERS M. Target gene-independent functions of MYC oncoproteins[J]. Nat Rev Mol Cell Biol,2020,21(5):255-267. DOI:10.1038/s41580-020-0215-2. [34]YIN X,TANG B,LI J H,et al. ID1 promotes hepatocellular carcinoma proliferation and confers chemoresistance to oxaliplatin by activating pentose phosphate pathway[J]. J Exp Clin Cancer Res,2017,36(1):166. DOI:10.1186/s13046-017-0637-7. [35]YANG X C,YE H H,HE M Q,et al. LncRNA PDIA3P interacts with c-Myc to regulate cell proliferation via induction of pentose phosphate pathway in multiple myeloma[J]. Biochem Biophys Res Commun,2018,498(1):207-213. DOI:10.1016/j.bbrc.2018.02.211. [36]HANKER A B,KAKLAMANI V,ARTEAGA C L. Challenges for the clinical development of PI3K inhibitors:strategies to improve their impact in solid tumors[J]. Cancer Discov,2019,9(4):482-491. DOI:10.1158/2159-8290.CD-18-1175. [37]SUN Y,GU X,ZHANG E,et al. Estradiol promotes pentose phosphate pathway addiction and cell survival via reactivation of Akt in mTORC1 hyperactive cells[J]. Cell Death Dis,2014,5:e1231. DOI:10.1038/cddis.2014.204. [38]CHENG J,HUANG Y,ZHANG X,et al. TRIM21 and PHLDA3 negatively regulate the crosstalk between the PI3K/AKT pathway and PPP metabolism[J]. Nat Commun,2020,11(1):1880. DOI:10.1038/s41467-020-15819-3. [39]HONG X H,SONG R P,SONG H W,et al. PTEN antagonises Tcl1/hnRNPK-mediated G6PD pre-mRNA splicing which contributes to hepatocarcinogenesis[J]. Gut,2014,63(10):1635-1647. DOI:10.1136/gutjnl-2013-305302. [40]ROJO D L V M,CHAPMAN E,ZHANG D D. NRF2 and the hallmarks of cancer[J]. Cancer Cell,2018,34(1):21-43. DOI:10.1016/j.ccell.2018.03.022. [41]ZHANG H S,ZHANG Z G,DU G Y,et al. Nrf2 promotes breast cancer cell migration via up-regulation of G6PD/HIF-1α/Notch1 axis[J]. J Cell Mol Med,2019,23(5):3451-3463. DOI:10.1111/jcmm.14241. [42]SAMATIWAT P,PRAWAN A,SENGGUNPRAI L,et al. Nrf2 inhibition sensitizes cholangiocarcinoma cells to cytotoxic and antiproliferative activities of chemotherapeutic agents[J]. Tumour Biol,2016,37(8):11495-11507. DOI:10.1007/s13277-016-5015-0. [43]AHMAD F,DIXIT D,SHARMA V,et al. Nrf2-driven TERT regulates pentose phosphate pathway in glioblastoma[J]. Cell Death Dis,2016,7:e2213. DOI:10.1038/cddis.2016.117. [44]KIM N W,PIATYSZEK M A,PROWSE K R,et al. Specific association of human telomerase activity with immortal cells and cancer[J]. Science,1994,266(5193):2011-2015. DOI:10.1126/science.7605428. [45]PONNUSAMY L,NATARAJAN S R,THANGARAJ K,et al. Therapeutic aspects of AMPK in breast cancer:progress,challenges,and future directions[J]. Biochim Biophys Acta Rev Cancer,2020,1874(1):188379. DOI:10.1016/j.bbcan.2020.188379. [46]YANG L,HE Z H,YAO J Y,et al. Regulation of AMPK-related glycolipid metabolism imbalances redox homeostasis and inhibits anchorage independent growth in human breast cancer cells[J]. Redox Biol,2018,17:180-191. DOI:10.1016/j.redox.2018.04.016. [47]SHAN C L,LU Z L,LI Z,et al. 4-hydroxyphenylpyruvate dioxygenase promotes lung cancer growth via pentose phosphate pathway(PPP)flux mediated by LKB1-AMPK/HDAC10/G6PD axis[J]. Cell Death Dis,2019,10(7):525. DOI:10.1038/s41419-019-1756-1. [48]HU T,CHANG Y F,XIAO Z,et al. miR-1 inhibits progression of high-risk papillomavirus-associated human cervical cancer by targeting G6PD[J]. Oncotarget,2016,7(52):86103-86116. DOI:10.18632/oncotarget.13344. [49]BARAJAS J M,REYES R,GUERRERO M J,et al. The role of miR-122 in the dysregulation of glucose-6-phosphate dehydrogenase(G6PD)expression in hepatocellular cancer[J]. Sci Rep,2018,8(1):9105. DOI:10.1038/s41598-018-27358-5. [50]SU X Y,GAO C C,FENG X Y,et al. miR-613 suppresses migration and invasion in esophageal squamous cell carcinoma via the targeting of G6PD[J]. Exp Ther Med,2020,19(4):3081-3089. DOI:10.3892/etm. 2020.8540. [51]GUO Q,REN X,ZHAO C,et al. MicroRNA-206 inhibits tumor metastasis of nasopharyngeal carcinoma through targeting G6PD[J]. J Biol Regul Homeost Agents,2020,34(2). DOI:10.23812/20-36A. [52]CUI J P,PAN Y H,WANG J H,et al. MicroRNA-206 suppresses proliferation and predicts poor prognosis of HR-HPV-positive cervical cancer cells by targeting G6PD[J]. Oncol Lett,2018,16 (5):5946-5952. DOI:10.3892/ol.2018.9326. [53]WANG X L,CHEN K F,ZHAO Z J. LncRNA OR3A4 regulated the growth of osteosarcoma cells by modulating the miR-1207-5p/G6PD signaling[J]. Onco Targets Ther,2020,13:3117-3128. DOI:10.2147/OTT.S234514. [54]ZHAO L,ZHANG X D,SHI Y T,et al. LncRNA SNHG14 contributes to the progression of NSCLC through miR-206/G6PD pathway[J]. Thorac Cancer,2020,11(5):1202-1210. DOI:10.1111/1759-7714.13374. [55]FENG J L,YANG M Q,WEI Q,et al. Novel evidence for oncogenic PiRNA-823 as a promising prognostic biomarker and a potential therapeutic target in colorectal cancer[J]. J Cell Mol Med,2020,24(16):9028-9040. DOI:10.1111/jcmm.15537. [56]YANG C A,HUANG H Y,LIN C L,et al. G6PD as a predictive marker for glioma risk,prognosis and chemosensitivity[J]. J Neurooncol,2018,139(3):661-670. DOI:10.1007/s11060-018-2911-8. [57]ZHANG R W,TAO F Z,RUAN S H,et al. The TGFβ1-FOXM1-HMGA1-TGFβ1 positive feedback loop increases the cisplatin resistance of non-small cell lung cancer by inducing G6PD expression[J]. Am J Transl Res,2019,11(11):6860-6876. [58]BENITO A,POLAT I H,NOéV,et al. Glucose-6-phosphate dehydrogenase and transketolase modulate breast cancer cell metabolic reprogramming and correlate with poor patient outcome[J]. Oncotarget,2017,8(63):106693-106706. DOI:10.18632/oncotarget.21601. [59]MELE L,LA NOCE M,PAINO F,et al. Glucose-6-phosphate dehydrogenase blockade potentiates tyrosine kinase inhibitor effect on breast cancer cells through autophagy perturbation[J]. J Exp Clin Cancer Res,2019,38(1):160. DOI:10.1186/s13046-019-1164-5. [60]WANG W J,CAI Q Y,ZHOU F,et al. Impaired pentose phosphate pathway in the development of 3D MCF-7 cells mediated intracellular redox disturbance and multi-cellular resistance without drug induction[J]. Redox Biol,2018,15:253-265. DOI:10.1016/j.redox.2017.12.009. [61]WANG X,LIU H T,ZHANG X Q,et al. G6PD downregulation triggered growth inhibition and induced apoptosis by regulating STAT3 signaling pathway in esophageal squamous cell carcinoma[J]. Tumour Biol,2016,37(1):781-789. DOI:10.1007/s13277-015-3861-9. [62]LU M,LU L,DONG Q Z,et al. Elevated G6PD expression contributes to migration and invasion of hepatocellular carcinoma cells by inducing epithelial-mesenchymal transition[J]. Acta Biochim Biophys Sin(Shanghai),2018,50(4):370-380. DOI:10.1093/abbs/gmy009. [63]JU H Q,LU Y X,WU Q N,et al. Disrupting G6PD-mediated Redox homeostasis enhances chemosensitivity in colorectal cancer[J]. Oncogene,2017,36(45):6282-6292. DOI:10.1038/onc.2017.227. [64]FENG Q,LI X R,SUN W J,et al. Targeting G6PD reverses paclitaxel resistance in ovarian cancer by suppressing GSTP1[J]. Biochem Pharmacol,2020,178:114092. DOI:10.1016/j.bcp.2020.114092. [65]ZHANG Q,HAN Q Q,YANG Z,et al. G6PD facilitates clear cell renal cell carcinoma invasion by enhancing MMP2 expression through ROS MAPK axis pathway[J]. Int J Oncol,2020,57(1):197-212. DOI:10.3892/ijo. 2020. 5041. [66]CHEN X Y,XU Z J,ZHU Z J,et al. Modulation of G6PD affects bladder cancer via ROS accumulation and the AKT pathway in vitro[J]. Int J Oncol,2018,53(4):1703-1712. DOI:10.3892/ijo.2018.4501. [67]CAI T C,KUANG Y M,ZHANG C H,et al. Glucose-6-phosphate dehydrogenase and NADPH oxidase 4 control STAT3 activity in melanoma cells through a pathway involving reactive oxygen species,c-SRC and SHP2[J]. Am J Cancer Res,2015,5(5):1610-1620. [68]COHEN P,ROSEMEYER M A. Subunit interactions of glucose-6-phosphate dehydrogenase from human erythrocytes[J]. Eur J Biochem,1969,8(1):8-15. DOI:10.1111/j. 1432-1033. 1969. tb00488. x. [69]HAFNER A,BULYK M L,JAMBHEKAR A,et al. The multiple mechanisms that regulate p53 activity and cell fate[J]. Nat Rev Mol Cell Biol,2019,20(4):199-210. DOI:10.1038/s41580-019-0110-x. [70]JIANG P,DU W J,WANG X W,et al. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase[J]. Nat Cell Biol,2011,13(3):310-316. DOI:10.1038/ncb2172. [71]MURRAY B W,GUO C,PIRAINO J,et al. Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth[J]. PNAS,2010,107(20):9446-9451. DOI:10.1073/pnas. 0911863107. [72]ZHANG X M,ZHANG X,LI Y,et al. PAK4 regulates G6PD activity by p53 degradation involving colon cancer cell growth[J]. Cell Death Dis,2017,8(5):e2820. DOI:10.1038/cddis. 2017. 85. [73]WEI J,YANG Y,LU M,et al. Escape,or vanish:control the fate of p53 through MDM2-mediated ubiquitination[J]. Anticancer Agents Med Chem,2015,16(2):174-189. DOI:10.2174/1871520615666150907093358. [74]KONG D H,LI S,DU Z X,et al. BAG3 elevation inhibits cell proliferation via direct interaction with G6PD in hepatocellular carcinomas[J]. Oncotarget,2016,7(1):700-711. DOI:10.18632/oncotarget. 6396. [75]CHEN L,YANG H X,YI Z H,et al. LncRNA GAS5 regulates redox balance and dysregulates the cell cycle and apoptosis in malignant melanoma cells[J]. J Cancer Res Clin Oncol,2019,145(3):637-652. DOI:10.1007/s00432-018-2820-4. [76]MA X Y,WANG L,HUANG D,et al. Polo-like kinase 1 coordinates biosynthesis during cell cycle progression by directly activating pentose phosphate pathway[J]. Nat Commun,2017,8(1):1506. DOI:10.1038/s41467-017-01647-5. [77]XU S N,WANG T S,LI X,et al. SIRT2 activates G6PD to enhance NADPH production and promote leukaemia cell proliferation[J]. Sci Rep,2016,6:32734. DOI:10.1038/srep32734. [78]YE H X,HUANG H G,CAO F,et al. HSPB1 enhances SIRT2-mediated G6PD activation and promotes glioma cell proliferation[J]. PLoS One,2016,11(10):e0164285. DOI:10.1371/journal. pone.0164285. [79]AI G Q,DACHINENI R,KUMAR D R,et al. Aspirin inhibits glucose 6 phosphate dehydrogenase activity in HCT 116 cells through acetylation:Identification of aspirin-acetylated sites[J]. Mol Med Rep,2016,14(2):1726-1732. DOI:10.3892/mmr.2016.5449. [80]RAO X J,DUAN X T,MAO W M,et al. O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth[J]. Nat Commun,2015,6:8468. DOI:10.1038/ncomms9468. [81]SALVIOLI S,STORCI G,PINTI M,et al. Apoptosis-resistant phenotype in HL-60-derived cells HCW-2 is related to changes in expression of stress-induced proteins that impact on redox status and mitochondrial metabolism[J]. Cell Death Differ,2003,10(2):163-174. DOI:10.1038/sj.cdd.4401124. [82]DODSON M,DARLEY-USMAR V,ZHANG J H. Cellular metabolic and autophagic pathways:traffic control by redox signaling[J]. Free Radic Biol Med,2013,63:207-221. DOI:10.1016/j.freeradbiomed.2013.05.014. [83]BADGLEY M A,KREMER D M,MAURER H C,et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice[J]. Science,2020,368(6486):85-89. DOI:10.1126/science.aaw9872. [84]DING C C,ROSE J,SUN T,et al. MESH1 is a cytosolic NADPH phosphatase that regulates ferroptosis[J]. Nat Metab,2020,2(3):270-277. DOI:10.1038/s42255-020-0181-1. [85]BUDIHARDJO,I I,WALKER D L,SVINGEN P A,et al. 6-Aminonicotinamide sensitizes human tumor cell lines to cisplatin[J]. Clin Cancer Res,1998,4(1):117-130. [86]POLIMENI M,VOENA C,KOPECKA J,et al. Modulation of doxorubicin resistance by the glucose-6-phosphate dehydrogenase activity[J]. Biochem J,2011,439(1):141-149. DOI:10.1042/BJ20102016. [87]RATKO T A,DETRISAC C J,MEHTA R G,et al. Inhibition of rat mammary gland chemical carcinogenesis by dietary dehydroepiandrosterone or a fluorinated analogue of dehydroepiandrosterone[J]. Cancer Res,1991,51(2):481-486. [88]RAO K,JOHNSON W,BOSLAND M,et al. Chemoprevention of rat prostate carcinogenesis by early and delayed administration of dehydroepiandrosterone[J]. Cancer Res,1999,59(13):3084-3089. [89]INANO H,ISHII-OHBA H,SUZUKI K,et al. Chemoprevention by dietary dehydroepiandrosterone against promotion/progression phase of radiation-induced mammary tumorigenesis in rats[J]. J Steroid Biochem Mol Biol,1995,54(1/2):47-53. DOI:10.1016/0960-0760(95)00113-E. [90]SHOHAT-TAL A,SEN A,BARAD D H,et al. Genetics of androgen metabolism in women with infertility and hypoandrogenism[J]. Nat Rev Endocrinol,2015,11(7):429-441. DOI:10.1038/nrendo.2015.64. [91]SHIN E S,PARK J,SHIN J M,et al. Catechin gallates are NADP+-competitive inhibitors of glucose-6-phosphate dehydrogenase and other enzymes that employ NADP+as a coenzyme[J]. Bioorg Med Chem,2008,16(7):3580-3586. DOI:10.1016/j.bmc.2008.02.030. [92]MELE L,PAINO F,PAPACCIO F,et al. A new inhibitor of glucose-6-phosphate dehydrogenase blocks pentose phosphate pathway and suppresses malignant proliferation and metastasis in vivo[J]. Cell Death Dis,2018,9(5):572. DOI:10.1038/s41419-018-0635-5. [93]FRIESEN C,KIESS Y,DEBATIN K M. A critical role of glutathione in determining apoptosis sensitivity and resistance in leukemia cells[J]. Cell Death Differ,2004,11(Suppl 1):S73-S85. DOI:10.1038/sj.cdd.4401431. [94]GESSNER T,VAUGHAN L A,BEEHLER B C,et al. Elevated pentose cycle and glucuronyltransferase in daunorubicin-resistant P388 cells[J]. Cancer Res,1990,50(13):3921-3927. [95]TUTTLE S,STAMATO T,PEREZ M L,et al. Glucose-6-phosphate dehydrogenase and the oxidative pentose phosphate cycle protect cells against apoptosis induced by low doses of ionizing radiation[J]. Radiat Res,2000,153(6):781-787. DOI:10.1667/0033-7587(2000)153[0781:gpdato]2.0.co;2. [96]SHARMA P K,BHARDWAJ R,DWARAKANATH B S,et al. Metabolic oxidative stress induced by a combination of 2-DG and 6-AN enhances radiation damage selectively in malignant cells via non-coordinated expression of antioxidant enzymes[J]. Cancer Lett,2010,295(2):154-166. DOI:10.1016/j. canlet.2010.02.021. |
[1] | QIN Bangguo, SUN Jin, LI Man, QIU Jiaojiao, CHENG Bokai, ZHU Ping, WANG Shuxia. Relationship between Non-high-density Lipoprotein Cholesterol to High-density Lipoprotein Cholesterol Ratio and Left Ventricular Hypertrophy in a Community-based Hypertensive Population [J]. Chinese General Practice, 2025, 28(30): 3753-3760. |
[2] | ZHU Chen, YU Jiawen, JIANG Hao, GAN Panpan, XIA Tian, XU Haitao, DU Yingying. Research on the Predictive Value of Lipid Characteristics about Digestive System Tumors for Normal Phase Angles [J]. Chinese General Practice, 2025, 28(27): 3385-3390. |
[3] | YANG Jun, MAIBUBAIMU· Aisikaer, YANG Qianqian, LI Kai, YIN Gaojun, CAI Huizhen. Effects of Frequent Diets on Glucolipid Metabolism and Biorhythmic Expression in Humans [J]. Chinese General Practice, 2025, 28(27): 3432-3440. |
[4] | XIANG Xinyue, ZHANG Bingqing, OUYANG Yuqin, TANG Wenjuan, FENG Wenhuan. Impact of Short-term Medical Weight Loss on Atherosclerotic Cardiovascular Disease Risk in Patients with Obesity [J]. Chinese General Practice, 2025, 28(26): 3229-3239. |
[5] | ZHANG Ruimin, DONG Zheyi, LI Shuang, WANG Qian, CHEN Xiangmei. Traditional Chinese Medicine Factors Associated with Diabetic Nephropathy Diagnosed by Renal Biopsy [J]. Chinese General Practice, 2025, 28(26): 3307-3313. |
[6] | WANG Yajing, DUAN Xiaoyang, HOU Ran, HUANG Yajie, SHI Jian. Advances in Targeted Combination Therapy for Patients with Brain Metastases from EGFR-mutated Non-small Cell Lung Cancer [J]. Chinese General Practice, 2025, 28(26): 3328-3337. |
[7] | YIN Jiahui, YANG Xinhui, WANG Jingjing, ZHANG Yajing, WANG Lijuan, FU Zuodi, KONG Xiangshuang, GUO Guangxia, LI Yufeng. Predictive Value Waist-to-height Ratio, Waist-to-hip Ratio and Body Mass Index for Metabolic Syndrome [J]. Chinese General Practice, 2025, 28(26): 3258-3263. |
[8] | YANG Qifen, ZHAO Huiliang, GUO Yongsheng, QU Jinglian. The Impact of the Jagged1/Notch1 Signalling Pathway on Endothelial-mesenchymal Transition in Idiopathic Pulmonary Fibrosis [J]. Chinese General Practice, 2025, 28(25): 3151-3160. |
[9] | PAN Qi, REN Jingjing, MA Fanghui, HU Mengjie. Survey of General Practitioners' Cognition and Needs for AI Assisted Diagnosis and Treatment Systems [J]. Chinese General Practice, 2025, 28(25): 3127-3136. |
[10] | HAN Bing, DU Shuzhen, MENG Xiaoxue, ZHANG Lu, CHEN Zixian, TENG Fengling. Plasma Periostin Levels Correlated with Myocardial Fibrosis in Patients with Heart Failure with Different Ejection Fraction [J]. Chinese General Practice, 2025, 28(24): 2979-2984. |
[11] | QU Yuanyuan, SUN Yan, ZHU Liying, LI Honglei, LIN Baoqian, ZHANG Zhe, ZANG Xiaoying. Study on the Safety of Midline Catheters Infusion of 20% Mannitol in Neurocritical Care Patients [J]. Chinese General Practice, 2025, 28(24): 3059-3065. |
[12] | RUAN Wanbai, LI Junfeng, YIN Yanmei, PENG Lei, ZHU Kexiang. Research Progress of Targeted Therapy and Immunotherapy for Pancreatic Cancer [J]. Chinese General Practice, 2025, 28(23): 2950-2960. |
[13] | WU Sha, ZHANG Daiyi, LI Jin, XUAN Qinkao, QIAN Xiaodong, ZHU Chuanwu, PU Jianhong, ZHU Li. Correlation Analysis and Model Construction of Metabolic Associated Fatty Liver Disease and Hyperglycemia Based on a Health Examination Cohort [J]. Chinese General Practice, 2025, 28(23): 2861-2869. |
[14] | LIU Meixia, YIN Jinnian, WU Mei, YANG Xing, ZHOU Quanxiang, YANG Jingyuan. Impact of Body Mass Index on the Association of Triglyceride Glucose Index with Cognitive Function: a Cross-sectional Study in Rural Older Adults in Guizhou Province [J]. Chinese General Practice, 2025, 28(22): 2806-2812. |
[15] | GAO Haijun, REN Jiayu, WANG Ruolin, ZHOU Huiya, QU Peng. Research Progress on the Role of Endothelial Cell Injury and Dysfunction in Atherosclerosis [J]. Chinese General Practice, 2025, 28(21): 2697-2704. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||