
Chinese General Practice ›› 2021, Vol. 24 ›› Issue (3): 272-279.DOI: 10.12114/j.issn.1007-9572.2020.00.557
Special Issue: 心血管最新文章合辑
• Monographic Research • Previous Articles Next Articles
Published:2021-01-20
Online:2021-01-20
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chinagp.net/EN/10.12114/j.issn.1007-9572.2020.00.557
| [1]胡盛寿,高润霖,刘力生,等.《中国心血管病报告2018》概要[J].中国循环杂志,2019,34(3):209-220.DOI:10.3969/j.issn.1000-3614.2019.03.001. HU S T,GAO R L,LIU L S,et al.Summary of the 2018 Report on Cardiovascular Diseases in China[J].Chinese Circulation Journal,2019,34(3):209-220.DOI:10.3969/j.issn.1000-3614.2019.03.001. [2]杨杰孚,王华,柴坷.2018中国心力衰竭诊断和治疗指南亮点[J].中国心血管病研究,2018,16(12):1057-1060.DOI:10.3969/j.issn.1672-5301.2018.12.001. YANG J F,WANG H,CHAI K.High lights of the guidelines for diagnosis and treatment of heart failure in China in 2018[J].Chinese Journal of Cardiovascular Research,2018,16(12):1057-1060.DOI:10.3969/j.issn.1672-5301.2018.12.001. [3]GRUNDY S M,BENJAMIN I J,BURKE G L,et al.Diabetes and cardiovascular disease:a statement for healthcare professionals from the American Heart Association[J].Circulation,1999,100(10):1134-1146.DOI:10.1161/01.cir.100.10.1134. [4]FONAROW G C.Diabetes medications and heart failure:recognizing the risk[J].Circulation,2014,130(18):1565-1567.DOI:10.1161/CIRCULATIONAHA.114.012883. [5]GRAHAM D J,OUELLET-HELLSTROM R,MACURDY T E,et al.Risk of acute myocardial infarction,stroke,heart failure,and death in elderly medicare patients treated with rosiglitazone or pioglitazone[J].JAMA,2010,304(4):411.DOI:10.1001/jama.2010.920. [6]SCIRICA B M,BRAUNWALD E,RAZ I,et al.Heart failure,saxagliptin,and diabetes mellitus:observations from the SAVOR-TIMI 53 randomized trial[J].Circulation,2015,132(15):e198.DOI:10.1161/CIR.0000000000000330. [7]杨金凤,贾辛未,苏伟,等.钠-葡萄糖协同转运蛋白2抑制剂对心血管保护作用机制的研究进展[J].临床心血管病杂志,2020,36(2):107-110.DOI:10.13201/j.issn.1001-1439.2020.02.003. YANG J F,JIA X W,SU W,et al.Recent advances in the mechanism of cardiovascular protective effects of sodium-glucoseco-transporter 2 inhibitor[J].Journal of Clinical Cardiology,2020,36(2):107-110.DOI:10.13201/j.issn.1001-1439.2020.02.003. [8]AMERICAN DIABETES ASSOCIATION.Addendum.10.cardiovascular disease and risk management:standards of medical care in diabetes—2020.Diabetes care 2020;43(suppl.1):S111-134[J].Diabetes Care,2020,43(8):1977-1978.DOI:10.2337/dc20-ad08. [9]MCMURRAY J J V,SOLOMON S D,INZUCCHI S E,et al.Dapagliflozin in patients with heart failure and reduced ejection fraction[J].N Engl J Med,2019,381(21):1995-2008.DOI:10.1056/NEJMoa1911303. [10]ZINMAN B,WANNER C,LACHIN J M,et al.Empagliflozin,cardiovascular outcomes,and mortality in type 2 diabetes[J].N Engl J Med,2015,373(22):2117-2128.DOI:10.1056/NEJMoa1504720. [11]BUTLER J,ZANNAD F,FITCHETT D,et al.Empagliflozin improves kidney outcomes in patients with or without heart failure[J].Circ:Heart Fail,2019,12(6):e005875.DOI:10.1161/circheartfailure.118.005875. [12]NEAL B,PERKOVIC V,MAHAFFEY K W,et al.Canagliflozin and cardiovascular and renal events in type 2 diabetes[J].N Engl J Med,2017,377(7):644-657.DOI:10.1056/NEJMoa1611925. [13]R?DHOLM K,FIGTREE G,PERKOVIC V,et al.Canagliflozin and heart failure in type 2 diabetes mellitus:results from the CANVAS program[J].Circulation,2018,138(5):458-468.DOI:10.1161/CIRCULATIONAHA.118.034222. [14]KOSIBOROD M,CAVENDER M A,FU A Z,et al.Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs:the CVD-REAL study (comparative effectiveness of cardiovascular outcomes in new users of sodium-glucose cotransporter-2 inhibitors)[J].Circulation,2017,136(3):249-259.DOI:10.1161/CIRCULATIONAHA.117.029190. [15]KOSIBOROD M,LAM C S P,KOHSAKA S,et al.Cardiovascular events associated with SGLT-2 inhibitors versus other glucose-lowering drugs:the CVD-REAL 2 study[J].J Am Coll Cardiol,2018,71(23):2628-2639.DOI:10.1016/j.jacc.2018.03.009. [16]NEAL B,PERKOVIC V,MAHAFFEY K W,et al.Optimizing the analysis strategy for the CANVAS Program:a prespecified plan for the integrated analyses of the CANVAS and CANVAS-R trials[J].Diabetes Obes Metab,2017,19(7):926-935.DOI:10.1111/dom.12924. [17]WIVIOTT S D,RAZ I,BONACA M P,et al.Dapagliflozin and cardiovascular outcomes in type 2 diabetes[J].N Engl J Med,2019,380(4):347-357.DOI:10.1056/NEJMoa1812389. [18]KAPLINSKY E.DAPA-HF trial:dapagliflozin evolves from a glucose-lowering agent to a therapy for heart failure[J].Drugs Context,2020,9:2019-2011-3.DOI:10.7573/dic.2019-11-3. [19]CHERNEY D Z I,COOPER M E,TIKKANEN I,et al.Pooled analysis of PhaseⅢ trials indicate contrasting influences of renal function on blood pressure,body weight,and HbA1c reductions with empagliflozin[J].Kidney Int,2018,93(1):231-244.DOI:10.1016/j.kint.2017.06.017. [20]HORIE I,ABIRU N,HONGO R,et al.Increased sugar intake as a form of compensatory hyperphagia in patients with type 2 diabetes under dapagliflozin treatment[J].Diabetes Res Clin Pract,2018,135:178-184.DOI:10.1016/j.diabres.2017.11.016. [21]Look Ahead Research Group,WING R R,BOLIN P, et al.Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes[J].N Engl J Med,2013,369(2):145-154.DOI:10.1056/NEJMoa1212914. [22]BOLINDER J,LJUNGGREN ?,KULLBERG J,et al.Effects of dapagliflozin on body weight,total fat mass,and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin[J].J Clin Endocrinol Metab,2012,97(3):1020-1031.DOI:10.1210/jc.2011-2260. [23]PACKER M.Do sodium-glucose co-transporter-2 inhibitors prevent heart failure with a preserved ejection fraction by counterbalancing the effects of leptin? A novel hypothesis[J].Diabetes Obes Metab,2018,20(6):1361-1366.DOI:10.1111/dom.13229. [24]GARVEY W T,VAN GAAL L,LEITER L A,et al.Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes[J].Metab Clin Exp,2018,85:32-37.DOI:10.1016/j.metabol.2018.02.002. [25]SATO T,AIZAWA Y,YUASA S,et al.The effect of dapagliflozin treatment on epicardial adipose tissue volume[J].Cardiovasc Diabetol,2018,17(1):6.DOI:10.1186/s12933-017-0658-8. [26]NDREPEPA G,BRAUN S,KING L,et al.Association of uric acid with mortality in patients with stable coronary artery disease[J].Metab Clin Exp,2012,61(12):1780-1786.DOI:10.1016/j.metabol.2012.05.014. [27]HUANG H,HUANG B T,LI Y L,et al.Uric acid and risk of heart failure:a systematic review and meta-analysis[J].Eur J Heart Fail,2014,16(1):15-24.DOI:10.1093/eurjhf/hft132. [28]LYTVYN Y,?KRTIC M,YANG G K,et al.Glycosuria-mediated urinary uric acid excretion in patients with uncomplicated type 1 diabetes mellitus[J].Am J Physiol Renal Physiol,2015,308(2):F77-83.DOI:10.1152/ajprenal.00555.2014. [29]ZHAO Y M,XU L B,TIAN D L,et al.Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level:a meta-analysis of randomized controlled trials[J].Diabetes Obes Metab,2018,20(2):458-462.DOI:10.1111/dom.13101. [30]INZUCCHI S E,ZINMAN B,FITCHETT D,et al.How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME trial[J].Diabetes Care,2018,41(2):356-363.DOI:10.2337/dc17-1096. [31]VERMA S,JI Q H,BHATT D L,et al.Association between uric acid levels and cardio-renal outcomes and death in patients with type 2 diabetes:a subanalysis of EMPA-REG OUTCOME[J].Diabetes Obes Metab,2020,22(7):1207-1214.DOI:10.1111/dom.13991. [32]ZELNIKER T A,BRAUNWALD E.Clinical benefit of cardiorenal effects of sodium-glucose cotransporter 2 inhibitors:JACC state-of-the-art review[J].J Am Coll Cardiol,2020,75(4):435-447.DOI:10.1016/j.jacc.2019.11.036. [33]HALLOW K M,HELMLINGER G,GREASLEY P J,et al.Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis[J].Diabetes Obes Metab,2018,20(3):479-487.DOI:10.1111/dom.13126. [34]SHA S,POLIDORI D,HEISE T,et al.Effect of the sodium glucose co-transporter 2 inhibitor canagliflozin on plasma volume in patients with type 2 diabetes mellitus[J].Diabetes Obes Metab,2014,16(11):1087-1095.DOI:10.1111/dom.12322. [35]KANNENKERIL D,KARG M V,BOSCH A,et al.Tissue sodium content in patients with type 2 diabetes mellitus[J].J Diabetes Complicat,2019,33(7):485-489.DOI:10.1016/j.jdiacomp.2019.04.006. [36]KARG M V,BOSCH A,KANNENKERIL D,et al.SGLT-2-inhibition with dapagliflozin reduces tissue sodium content:a randomised controlled trial[J].Cardiovasc Diabetol,2018,17(1):5.DOI:10.1186/s12933-017-0654-z. [37]SCHNEIDER M P,RAFF U,KOPP C,et al.Skin sodium concentration correlates with left ventricular hypertrophy in CKD[J].J Am Soc Nephrol,2017,28(6):1867-1876.DOI:10.1681/ASN.2016060662. [38]SYMEONIDIS A,KOURAKLIS-SYMEONIDIS A,PSIROYIANNIS A,et al.Inappropriately low erythropoietin response for the degree of Anemia in patients with noninsulin-dependent diabetes mellitus[J].Ann Hematol,2006,85(2):79-85.DOI:10.1007/s00277-005-1102-9. [39]LAMBERS HEERSPINK H J,DE ZEEUW D,WIE L,et al.Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes[J].Diabetes Obes Metab,2013,15(9):853-862.DOI:10.1111/dom.12127. [40]SANO M,GOTO S.Possible mechanism of hematocrit elevation by sodium glucose cotransporter 2 inhibitors and associated beneficial renal and cardiovascular effects[J].Circulation,2019,139(17):1985-1987.DOI:10.1161/CIRCULATIONAHA.118.038881. [41]MAZIDI M,REZAIE P,GAO H K,et al.Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus:a systematic review and meta-analysis of 43 randomized control trials with 22 528 patients[J].J Am Heart Assoc,2017,6(6):e004007.DOI:10.1161/JAHA.116.004007. [42]GEORGIANOS P I,AGARWAL R.Ambulatory blood pressure reduction with SGLT-2 inhibitors:dose-response meta-analysis and comparative evaluation with low-dose hydrochlorothiazide[J].Diabetes Care,2019,42(4):693-700.DOI:10.2337/dc18-2207. [43]STRIEPE K,JUMAR A,OTT C,et al.Effects of the selective sodium-glucose cotransporter 2 inhibitor empagliflozin on vascular function and central hemodynamics in patients with type 2 diabetes mellitus[J].Circulation,2017,136(12):1167-1169.DOI:10.1161/CIRCULATIONAHA.117.029529. [44]OTT C,JUMAR A,STRIEPE K,et al.A randomised study of the impact of the SGLT2 inhibitor dapagliflozin on microvascular and macrovascular circulation[J].Cardiovasc Diabetol,2017,16(1):26.DOI:10.1186/s12933-017-0510-1. [45]SANO M.A new class of drugs for heart failure:SGLT2 inhibitors reduce sympathetic overactivity[J].J Cardiol,2018,71(5):471-476.DOI:10.1016/j.jjcc.2017.12.004. [46]HILLIS G S,H T,WOODWARD M,et al.Resting heart rate and the risk of microvascular complications in patients with type 2 diabetes mellitus[J].J Am Heart Assoc,2012,1(5):e002832.DOI:10.1161/JAHA.112.002832. [47]RAHMAN A,FUJISAWA Y,NAKANO D,et al.Effect of a selective SGLT2 inhibitor,luseogliflozin,on circadian rhythm of sympathetic nervous function and locomotor activities in metabolic syndrome rats[J].Clin Exp Pharmacol Physiol,2017,44(4):522-525.DOI:10.1111/1440-1681.12725. [48]MATTHEWS V B,ELLIOT R H,RUDNICKA C,et al.Role of the sympathetic nervous system in regulation of the sodium glucose cotransporter 2[J].J Hypertens,2017,35(10):2059-2068.DOI:10.1097/HJH.0000000000001434. [49]CHERNEY D Z,PERKINS B A,SOLEYMANLOU N,et al.The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus[J].Cardiovasc Diabetol,2014,13:28.DOI:10.1186/1475-2840-13-28. [50]SANO M,CHEN S,IMAZEKI H,et al.Changes in heart rate in patients with type 2 diabetes mellitus after treatment with luseogliflozin:subanalysis of placebo-controlled,double-blind clinical trials[J].J Diabetes Investig,2018,9(3):638-641.DOI:10.1111/jdi.12726. [51]PRATTICHIZZO F,DE NIGRIS V,SPIGA R,et al.Inflammageing and metaflammation:the Yin and Yang of type 2 diabetes[J].Ageing Res Rev,2018,41:1-17.DOI:10.1016/j.arr.2017.10.003. [52]LIBBY P.Inflammation in atherosclerosis[J].Arterioscler Thromb Vasc Biol,2012,32(9):2045-2051.DOI:10.1161/ATVBAHA.108.179705. [53]KARASAWA T,TAKAHASHI M.Role of NLRP3 inflammasomes in atherosclerosis[J].J Atheroscler Thromb,2017,24(5):443-451.DOI:10.5551/jat.RV17001. [54]BONNET F,SCHEEN A J.Effects of SGLT2 inhibitors on systemic and tissue low-grade inflammation:the potential contribution to diabetes complications and cardiovascular disease[J].Diabetes Metab,2018,44(6):457-464.DOI:10.1016/j.diabet.2018.09.005. [55]ZHANG J,BOTTIGLIERI T,MCCULLOUGH P A.The central role of endothelial dysfunction in cardiorenal syndrome[J].Cardiorenal Med,2017,7(2):104-117.DOI:10.1159/000452283. [56]EL-DALY M,PULAKAZHI VENU V K,SAIFEDDINE M,et al. Hyperglycaemic impairment of PAR2-mediated vasodilation:Prevention by inhibition of aortic endothelial sodium-glucose-co-Transporter-2 and minimizing oxidative stress[J].Vascul Pharmacol,2018,109:56-71.DOI:10.1016/j.vph.2018.06.006. [57]SOLINI A,GIANNINI L,SEGHIERI M,et al.Dapagliflozin acutely improves endothelial dysfunction,reduces aortic stiffness and renal resistive index in type 2 diabetic patients:a pilot study[J].Cardiovasc Diabetol,2017,16(1):138.DOI:10.1186/s12933-017-0621-8. [58]LI C G,ZHANG J,XUE M,et al.SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart[J].Cardiovasc Diabetol,2019,18(1):15.DOI:10.1186/s12933-019-0816-2. [59]YARIBEYGI H,ATKIN S L,BUTLER A E,et al.Sodium-glucose cotransporter inhibitors and oxidative stress:an update[J].J Cell Physiol,2019,234(4):3231-3237.DOI:10.1002/jcp.26760. [60]KANG S A,VERMA S,HASSANABAD A F,et al.Direct effects of empagliflozin on extracellular matrix remodelling in human cardiac myofibroblasts:novel translational clues to explain EMPA-REG OUTCOME results[J].Can J Cardiol,2020,36(4):543-553.DOI:10.1016/j.cjca.2019.08.033. [61]BYRNE N J,PARAJULI N,LEVASSEUR J L,et al.Empagliflozin prevents worsening of cardiac function in an experimental model of pressure overload-induced heart failure[J].JACC Basic Transl Sci,2017,2(4):347-354.DOI:10.1016/j.jacbts.2017.07.003. [62]CONNELLY K A,ZHANG Y L,VISRAM A,et al.Empagliflozin improves diastolic function in a nondiabetic rodent model of heart failure with preserved ejection fraction[J].JACC Basic Transl Sci,2019,4(1):27-37.DOI:10.1016/j.jacbts.2018.11.010. [63]LEE H C,SHIOU Y L,JHUO S J,et al.The sodium-glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats[J].Cardiovasc Diabetol,2019,18(1):45.DOI:10.1186/s12933-019-0849-6. [64]LEE T M,CHANG N C,LIN S Z.Dapagliflozin,a selective SGLT2 inhibitor,attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts[J].Free Radic Biol Med,2017,104:298-310.DOI:10.1016/j.freeradbiomed.2017.01.035. [65]SHI L,ZHU D Q,WANG S B,et al.Dapagliflozin attenuates cardiac remodeling in mice model of cardiac pressure overload[J].Am J Hypertens,2019,32(5):452-459.DOI:10.1093/ajh/hpz016. [66]VERMA S,GARG A,YAN A T,et al.Effect of empagliflozin on left ventricular mass and diastolic function in individuals with diabetes:an important clue to the EMPA-REG OUTCOME trial?[J].Diabetes Care,2016,39(12):e212-e213.DOI:10.2337/dc16-1312. [67]VERMA S,MAZER C D,YAN A T,et al.Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease:the EMPA-HEART CardioLink-6 randomized clinical trial[J].Circulation,2019,140(21):1693-1702.DOI:10.1161/CIRCULATIONAHA.119.042375. [68]SINGH J S,FATHI A,VICKNESON K,et al.Research into the effect of SGLT2 inhibition on left ventricular remodelling in patients with heart failure and diabetes mellitus (REFORM) trial rationale and design[J].Cardiovasc Diabetol,2016,15:97.DOI:10.1186/s12933-016-0419-0. [69]KAPPEL B A,LEHRKE M,SCHüTT K,et al.Effect of empagliflozin on the metabolic signature of patients with type 2 diabetes mellitus and cardiovascular disease[J].Circulation,2017,136(10):969-972.DOI:10.1161/CIRCULATIONAHA.117.029166. [70]AUBERT G,MARTIN O J,HORTON J L,et al.The failing heart relies on ketone bodies as a fuel[J].Circulation,2016,133(8):698-705.DOI:10.1161/CIRCULATIONAHA.115.017355. [71]HORTON J L,DAVIDSON M T,KURISHIMA C,et al.The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense[J].JCI Insight,2019,4(4):124079.DOI:10.1172/jci.insight.124079. [72]VERMA S,RAWAT S,HO K L,et al.Empagliflozin increases cardiac energy production in diabetes:novel translational insights into the heart failure benefits of SGLT2 inhibitors[J].JACC Basic Transl Sci,2018,3(5):575-587.DOI:10.1016/j.jacbts.2018.07.006. [73]NAKAMURA M,SADOSHIMA J.Ketone body can be a fuel substrate for failing heart[J].Cardiovasc Res,2019,115(11):1567-1569.DOI:10.1093/cvr/cvz104. [74]SANTOS-GALLEGO C G,REQUENA-IBANEZ J A,SAN ANTONIO R,et al.Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics[J].J Am Coll Cardiol,2019,73(15):1931-1944.DOI:10.1016/j.jacc.2019.01.056. [75]RAMIREZ A J,SANCHEZ M J,SANCHEZ R A.Diabetic patients with essential hypertension treated with amlodipine[J].J Hypertens,2019,37(3):636-642.DOI:10.1097/hjh.0000000000001907. [76]BAARTSCHEER A,SCHUMACHER C A,WüST R C,et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits[J].Diabetologia,2017,60(3):568-573.DOI:10.1007/s00125-016-4134-x. [77]CLANCY C E,CHEN-IZU Y,BERS D M,et al.Deranged sodium to sudden death[J].J Physiol (Lond),2015,593(6):1331-1345.DOI:10.1113/jphysiol.2014.281204. [78]KOHLHAAS M,LIU T,KNOPP A,et al.Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes[J].Circulation,2010,121(14):1606-1613.DOI:10.1161/CIRCULATIONAHA.109.914911. [79]UTHMAN L,BAARTSCHEER A,BLEIJLEVENS B,et al.Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts:inhibition of Na+/H+ exchanger,lowering of cytosolic Na+ and vasodilation[J].Diabetologia,2018,61(3):722-726.DOI:10.1007/s00125-017-4509-7. [80]LIM V G,BELL R M,ARJUN S,et al.SGLT2 inhibitor,canagliflozin,attenuates myocardial infarction in the diabetic and nondiabetic heart[J].JACC Basic Transl Sci,2019,4(1):15-26.DOI:10.1016/j.jacbts.2018.10.002. [81]LING H Y,GRAY C B,ZAMBON A C,et al.Ca2+/Calmodulin-dependent protein kinaseⅡ δ mediates myocardial ischemia/reperfusion injury through nuclear factor-κB[J].Circ Res,2013,112(6):935-944.DOI:10.1161/CIRCRESAHA.112.276915. [82]MUSTROPH J,WAGEMANN O,LüCHT C M,et al.Empagliflozin reduces Ca/calmodulin-dependent kinase II activity in isolated ventricular cardiomyocytes[J].ESC Heart Fail,2018,5(4):642-648.DOI:10.1002/ehf2.12336. [83]HEERSPINK H J,PERKINS B A,FITCHETT D H,et al.Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus:cardiovascular and kidney effects,potential mechanisms,and clinical applications[J].Circulation,2016,134(10):752-772.DOI:10.1161/CIRCULATIONAHA.116.021887. [84]KOHAN D E,FIORETTO P,TANG W H,et al.Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control[J].Kidney Int,2014,85(4):962-971.DOI:10.1038/ki.2013.356. [85]WILLIAMSON J R,CHANG K,FRANGOS M,et al.Hyperglycemic pseudohypoxia and diabetic complications[J].Diabetes,1993,42(6):801-813.DOI:10.2337/diab.42.6.801. [86]FRALICK M,SCHNEEWEISS S,PATORNO E.Risk of diabetic ketoacidosis after initiation of an SGLT2 inhibitor[J].N Engl J Med,2017,376(23):2300-2302.DOI:10.1056/NEJMc1701990. |
| [1] | MA Shuangshuang, XING Yanjiang, ZHANG Jiawei, WANG Jing. Research Progress on Cardiac Energy Metabolic Changes in Heart Failure with Preserved Ejection Fraction [J]. Chinese General Practice, 2025, 28(30): 3831-3840. |
| [2] | ZHOU Sheng, DENG Changsheng, ZOU Guanyang, SONG Jianping. Research Progress on the Pathogenesis of Complications of Malaria in Cardiovascular Diseases [J]. Chinese General Practice, 2025, 28(27): 3466-3472. |
| [3] | LIU Zhenyu, WEI Yunpeng, WANG Jiangmin, XING Yan. Causal Association Study between Sleep Duration and Heart Failure [J]. Chinese General Practice, 2025, 28(27): 3441-3446. |
| [4] | XIANG Xinyue, ZHANG Bingqing, OUYANG Yuqin, TANG Wenjuan, FENG Wenhuan. Impact of Short-term Medical Weight Loss on Atherosclerotic Cardiovascular Disease Risk in Patients with Obesity [J]. Chinese General Practice, 2025, 28(26): 3229-3239. |
| [5] | LIU Wenjie, SUN Huang, LUO Wei, CHEN Xuan, PENG Yunzhu, LI Ruijie, MA Mier. Wearable Acoustic-electrocardiographic Remote Monitoring Device for Heart Failure [J]. Chinese General Practice, 2025, 28(25): 3104-3109. |
| [6] | YANG Chen, CHEN Tong, ZHANG Lifang, ZHANG Hongxu, LI Pengfei, ZHANG Xuejuan. Prognostic Impact of Dapagliflozin in Elderly Breast Cancer Survivors with Heart Failure with Preserved Ejection Fraction and Type 2 Diabetes [J]. Chinese General Practice, 2025, 28(24): 3053-3058. |
| [7] | HAN Bing, DU Shuzhen, MENG Xiaoxue, ZHANG Lu, CHEN Zixian, TENG Fengling. Plasma Periostin Levels Correlated with Myocardial Fibrosis in Patients with Heart Failure with Different Ejection Fraction [J]. Chinese General Practice, 2025, 28(24): 2979-2984. |
| [8] | LIU Yinyin, SUI Hongping, LI Tingting, JIANG Tongtong, SHI Tieying, XIA Yunlong. Advances in Risk Prediction Models for Cardiotoxicity Associated with Breast Cancer Treatment [J]. Chinese General Practice, 2025, 28(24): 3072-3078. |
| [9] | DONG Haocheng, HAO Xiao, AN Dong, LI Haohan, LI Shuren. Research Progress of Heart Failure with Supra-normal Ejection Fraction [J]. Chinese General Practice, 2025, 28(21): 2692-2696. |
| [10] | PAN Yaojia, FU Fanglin, HAN Zheng, SUN Meng, GU Huaicong, WANG Weiqiang. Correlation of the Type of Obesity with the Cardiometabolic Multimorbidity: a Study in Male and Female Middle-aged Residents in Anhui Province [J]. Chinese General Practice, 2025, 28(18): 2285-2293. |
| [11] | HAN Zheng, SUN Meng, FU Fanglin, PAN Yaojia, WANG Weiqiang. A Study on the Relationship between the Triglyceride-Glucose Index and Cardiometabolic Multimorbidity in Individuals Aged 50 and Above [J]. Chinese General Practice, 2025, 28(18): 2278-2284. |
| [12] | ZHANG Bingqing, WANG Zhongkai, WU Changyong, SUN Huang, LI Ruijie, LIU Wenjie, LUO Yihua, ZHENG Lihui, PENG Yunzhu. Changes and Trend Prediction in the Global Burden of Congenital Heart Defects, 1990-2021 [J]. Chinese General Practice, 2025, 28(18): 2253-2261. |
| [13] | HE Ting, LI Jia, TAN Wenbin. Research Progress of Circulatory System Diseases and Secondary Osteoporosis [J]. Chinese General Practice, 2025, 28(17): 2101-2112. |
| [14] | AN Qinyu, WANG Yiying, ZHANG Xiaodan, ZHANG Tianlin, ZHAN Qingqing, ZHANG Fuyan, LIU Tao, WU Yanli. Prospective Cohort Study of the Impact of Socioeconomic Status and Healthy Lifestyle on Cardiovascular Disease [J]. Chinese General Practice, 2025, 28(16): 2017-2024. |
| [15] | NIE Yuanyuan, FANG Da, XU Hao, YANG Donghui, BI Yan, GU Tianwei. Clinical Characteristics and Cardiovascular Disease Risk of Type 2 Diabetes Populations with Different Liver Fibrosis Risks [J]. Chinese General Practice, 2025, 28(15): 1847-1854. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||