
Chinese General Practice ›› 2025, Vol. 28 ›› Issue (09): 1128-1136.DOI: 10.12114/j.issn.1007-9572.2024.0394
Special Issue: 数智医疗最新文章合辑
• Original Research • Previous Articles Next Articles
Received:2024-06-10
Revised:2024-10-10
Published:2025-03-20
Online:2025-01-02
Contact:
ZHOU Yanting, CHEN Jian
通讯作者:
周燕婷, 陈健
作者简介:作者贡献:
王甘红、陈健进行文章的构思与设计;奚美娟、夏开建、张子豪进行数据收集及数据整理,并进行统计学处理与代码报错解决;王甘红、周燕婷撰写论文并进行论文的修订;陈健对文章整体负责,监督管理。
基金资助:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chinagp.net/EN/10.12114/j.issn.1007-9572.2024.0394
| 项目 | 艾叶 | 阿胶 | 白扁豆 | 百部 | 白矾 | 百合 | 白蔻 | 白茅根 | 白芍 | 白头翁 | 白术 | 柏子仁 | 巴戟天 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 训练集 | 1 634 | 1 557 | 1 567 | 1 713 | 1 567 | 1 565 | 1 553 | 1 543 | 1 493 | 1 565 | 1 571 | 1 567 | 1 617 |
| 验证集 | 58 | 63 | 53 | 69 | 53 | 55 | 67 | 77 | 69 | 55 | 49 | 53 | 48 |
| 测试集 | 70 | 75 | 54 | 58 | 69 | 58 | 75 | 57 | 44 | 61 | 75 | 58 | 56 |
| 合计 | 1 762 | 1 695 | 1 674 | 1 840 | 1 689 | 1 678 | 1 695 | 1 677 | 1 606 | 1 681 | 1 695 | 1 678 | 1 721 |
Table 1 Number of images for TCM herbals
| 项目 | 艾叶 | 阿胶 | 白扁豆 | 百部 | 白矾 | 百合 | 白蔻 | 白茅根 | 白芍 | 白头翁 | 白术 | 柏子仁 | 巴戟天 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 训练集 | 1 634 | 1 557 | 1 567 | 1 713 | 1 567 | 1 565 | 1 553 | 1 543 | 1 493 | 1 565 | 1 571 | 1 567 | 1 617 |
| 验证集 | 58 | 63 | 53 | 69 | 53 | 55 | 67 | 77 | 69 | 55 | 49 | 53 | 48 |
| 测试集 | 70 | 75 | 54 | 58 | 69 | 58 | 75 | 57 | 44 | 61 | 75 | 58 | 56 |
| 合计 | 1 762 | 1 695 | 1 674 | 1 840 | 1 689 | 1 678 | 1 695 | 1 677 | 1 606 | 1 681 | 1 695 | 1 678 | 1 721 |
| 模型 | 准确率(%) | 精确率(%) | 灵敏度(%) | F1分数(%) | AUC |
|---|---|---|---|---|---|
| EfficientNetB0 | 99.04 | 99.02 | 99.04 | 98.99 | 0.994 2 |
| MobileNetV3 | 99.03 | 99.04 | 99.03 | 99.02 | 0.992 7 |
| ResNet50 | 86.71 | 86.44 | 86.75 | 86.36 | 0.878 9 |
| VGG19 | 98.00 | 97.86 | 97.98 | 97.84 | 0.978 6 |
| ResNet18 | 77.60 | 77.10 | 77.27 | 76.79 | 0.779 1 |
Table 2 Comparison of the performance of AI models in the validation dataset
| 模型 | 准确率(%) | 精确率(%) | 灵敏度(%) | F1分数(%) | AUC |
|---|---|---|---|---|---|
| EfficientNetB0 | 99.04 | 99.02 | 99.04 | 98.99 | 0.994 2 |
| MobileNetV3 | 99.03 | 99.04 | 99.03 | 99.02 | 0.992 7 |
| ResNet50 | 86.71 | 86.44 | 86.75 | 86.36 | 0.878 9 |
| VGG19 | 98.00 | 97.86 | 97.98 | 97.84 | 0.978 6 |
| ResNet18 | 77.60 | 77.10 | 77.27 | 76.79 | 0.779 1 |
| 类别 | 精确率 | 灵敏度 | 特异度 | F1分数 | 准确率 | 平均精度 | AUC | 马修斯相关系数 | 科恩卡帕系数 |
|---|---|---|---|---|---|---|---|---|---|
| 艾叶 | 1 | 0.983 | 1 | 0.991 | 0.983 | 1 | 1 | 0.991 | 0.991 |
| 阿胶 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 白扁豆 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 百部 | 0.971 | 0.986 | 1 | 0.978 | 0.986 | 1 | 1 | 0.978 | 0.978 |
| 白矾 | 0.981 | 1 | 1 | 0.991 | 1 | 1 | 1 | 0.991 | 0.991 |
| 百合 | 0.982 | 1 | 1 | 0.991 | 1 | 0.999 | 1 | 0.991 | 0.991 |
| 白花蛇舌草 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 白茅根 | 0.987 | 1 | 1 | 0.994 | 1 | 1 | 1 | 0.994 | 0.993 |
| 白芍 | 1 | 0.986 | 1 | 0.993 | 0.986 | 1 | 1 | 0.993 | 0.993 |
| 麦芽 | 0.510 | 0.754 | 0.995 | 0.608 | 0.754 | 0.564 | 0.997 | 0.617 | 0.605 |
| 牡丹皮 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 牡蛎 | 0.982 | 0.982 | 1 | 0.982 | 0.982 | 1 | 1 | 0.982 | 0.982 |
| 木香 | 1 | 0.970 | 1 | 0.985 | 0.970 | 1 | 1 | 0.985 | 0.985 |
| 牛膝 | 0.968 | 1 | 1 | 0.984 | 1 | 1 | 1 | 0.984 | 0.984 |
| 总体(加权平均) | 0.990 | 0.990 | 1 | 0.989 | 0.990 | 0.994 | 1 | 0.990 | 0.989 |
Table 3 Evaluation of the performance of the EfficientNetB0 model in the test dataset
| 类别 | 精确率 | 灵敏度 | 特异度 | F1分数 | 准确率 | 平均精度 | AUC | 马修斯相关系数 | 科恩卡帕系数 |
|---|---|---|---|---|---|---|---|---|---|
| 艾叶 | 1 | 0.983 | 1 | 0.991 | 0.983 | 1 | 1 | 0.991 | 0.991 |
| 阿胶 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 白扁豆 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 百部 | 0.971 | 0.986 | 1 | 0.978 | 0.986 | 1 | 1 | 0.978 | 0.978 |
| 白矾 | 0.981 | 1 | 1 | 0.991 | 1 | 1 | 1 | 0.991 | 0.991 |
| 百合 | 0.982 | 1 | 1 | 0.991 | 1 | 0.999 | 1 | 0.991 | 0.991 |
| 白花蛇舌草 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 白茅根 | 0.987 | 1 | 1 | 0.994 | 1 | 1 | 1 | 0.994 | 0.993 |
| 白芍 | 1 | 0.986 | 1 | 0.993 | 0.986 | 1 | 1 | 0.993 | 0.993 |
| 麦芽 | 0.510 | 0.754 | 0.995 | 0.608 | 0.754 | 0.564 | 0.997 | 0.617 | 0.605 |
| 牡丹皮 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 牡蛎 | 0.982 | 0.982 | 1 | 0.982 | 0.982 | 1 | 1 | 0.982 | 0.982 |
| 木香 | 1 | 0.970 | 1 | 0.985 | 0.970 | 1 | 1 | 0.985 | 0.985 |
| 牛膝 | 0.968 | 1 | 1 | 0.984 | 1 | 1 | 1 | 0.984 | 0.984 |
| 总体(加权平均) | 0.990 | 0.990 | 1 | 0.989 | 0.990 | 0.994 | 1 | 0.990 | 0.989 |
| [1] | |
| [2] | |
| [3] |
曹雪晓,任晓亮,王萌,等. 中药材及饮片规格等级质量标准研究进展[J]. 中药材,2021,44(2):490-494. DOI:10.13863/j.issn1001-4454.2021.02.044.
|
| [4] |
黄丽,张军,吴慧玲,等. 基于深度学习的内镜超声胆管扫查辅助分站系统构建[J]. 中华消化内镜杂志,2022,39(4):295-300. DOI:10.3760/cma.j.cn321463-20210628-00007.
|
| [5] |
吴树剑,俞咏梅,范莉芳,等. 基于增强CT深度学习影像组学术前预测胸腺瘤风险分类[J]. 中国肿瘤临床,2023,50(19):999-1005. DOI:10.12354/j.issn.1000-8179.2023.20230828.
|
| [6] |
陈健,王珍妮,夏开建,等. 基于深度学习的结直肠息肉内镜图像分割和分类方法比较[J]. 上海交通大学学报(医学版),2024,44(6):762-772.
|
| [7] |
郭丛,田钰嘉,李杨,等. 基于YOLOv4算法的中药饮片识别[J]. 中国实验方剂学杂志,2023,29(14):133-140. DOI:10.13422/j.cnki.syfjx.20230614.
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
许郭婷,吴爱荣,林嘉希,等. 基于深度卷积神经网络的上消化道内镜解剖分类模型构建[J]. 中国医学物理学杂志,2023,40(8):1051-1056. DOI:10.3969/j.issn.1005-202X.2023.08.021.
|
| [16] |
陈健,张子豪,卢勇达,等. 基于深度学习构建结直肠息肉诊断自动分类模型[J]. 中华诊断学电子杂志,2024,12(1):9-17.
|
| [17] |
王超超,张先超,谷正昌,等. 中药材及饮片检测中人工智能应用探讨[J]. 中国工程科学,2024,26(2):245-254.
|
| [18] |
胡晓东. 基于改进深度学习算法的中药饮片图像识别研究[D]. 长春:吉林农业大学,2023. DOI:10.27163/d.cnki.gjlnu.2023.000042.
|
| [19] |
|
| [20] |
林嘉希,汪盛嘉,赵鑫,等. 基于深度卷积神经网络的Barrett食管内镜图片分类模型的建立[J]. 上海交通大学学报(医学版),2022,42(5):653-659. DOI:10.3969/j.issn.1674-8115.2022.05.014.
|
| [21] |
|
| [1] | XU Baichuan, WANG Yan, ZHANG Peng, LI Yiting, LIU Feilai, XIE Yang. Research and Analysis of Screening Tools for Chronic Obstructive Pulmonary Disease Comorbidity Lung Cancer [J]. Chinese General Practice, 2025, 28(30): 3847-3852. |
| [2] | NIU Ben, ZHU Xiaoqian, YANG Chen, LIANG Wannian, LIU Jue. Evolution and Trends of Domestic and International Research Hotspots in the Field of Large Language Models in Medicine Based on CiteSpace [J]. Chinese General Practice, 2025, 28(25): 3200-3208. |
| [3] | PAN Qi, REN Jingjing, MA Fanghui, HU Mengjie. Survey of General Practitioners' Cognition and Needs for AI Assisted Diagnosis and Treatment Systems [J]. Chinese General Practice, 2025, 28(25): 3127-3136. |
| [4] | WANG Hui, HU Yinhuan, FENG Xiandong, LIU Sha, WANG Yangfan. The Application of Artificial Intelligence in Psychological Interventions: Effectiveness, Challenges, and Prospects [J]. Chinese General Practice, 2025, 28(25): 3209-3216. |
| [5] | ZHAO Yali, LU Xiaoqin, LIU Jue, ZHANG Yifan, ZHU Zuyi, CHEN Kaiyuan, LIU Min, LIANG Wannian. The Construction of Assessment Index System of Artificial Intelligence General Practitioner [J]. Chinese General Practice, 2025, 28(22): 2705-2711. |
| [6] | YAN Wenxin, LIU Jue, LIANG Wannian. DeepSeek Empowers General Medicine: Potential Application and Prospect [J]. Chinese General Practice, 2025, 28(17): 2065-2069. |
| [7] | LI Yiting, TU Wenjing, YIN Tingting, MEI Ziqi, ZHANG Sumin, WANG Meng, XU Guihua. Application of Artificial Intelligence in Nutritional Management of Patients with Inflammatory Bowel Disease: a Scoping Review [J]. Chinese General Practice, 2025, 28(14): 1709-1716. |
| [8] | GUO Xin, ZHOU Mingjuan, FAN Feiting, XIAO Jingmin, CHI Yihe, WU Lei, LIN Lin, CHEN Yuanbin. Acupoint Application with Tianjiu Powder for Pre-asthma: a Randomized Controlled Trial [J]. Chinese General Practice, 2025, 28(11): 1367-1375. |
| [9] | Tsinghua University Vanke School of Public Health, Peking University School of Public Health, Chinese Association of General Practitioners of Chinese Medical Doctor Association. Chinese Expert Consensus on Artificial Intelligence General Practitioner (AIGP) [J]. Chinese General Practice, 2025, 28(02): 135-142. |
| [10] | ZHANG Xuan, ZHANG Fei, LI Minglin, WANG Jiahe. Application and Challenges of Intelligent Robots in Grassroots Chronic Disease Management [J]. Chinese General Practice, 2025, 28(01): 7-12. |
| [11] | WANG Zhenni, XU Yueping, XIA Kaijian, XU Xiaodan, GU Lihua. Construction of an Artificial Intelligence-assisted System for Automatic Detection of Pressure Injury Based on the YOLO Neural Network [J]. Chinese General Practice, 2024, 27(36): 4582-4590. |
| [12] | ZHOU Yiheng, YANG Ziyu, LYU Yao, LIU Lidi, SHEN Can, LIAO Xiaoyang, JIA Yu. Interpretation of the Use of Artificial Intelligence in Improving Outcomes in Heart Disease:a Scientific Statement from the American Heart Association [J]. Chinese General Practice, 2024, 27(35): 4353-4357. |
| [13] | SHAO Jianwen, LIU Huan, ZHANG Yue, ZHENG Aiming, CHEN Songyu, WANG Jinfan. Development and Application of an AI-based Empathic Language Teaching and Evaluation System for Doctor-patient Communication [J]. Chinese General Practice, 2024, 27(34): 4315-4321. |
| [14] | LIU Huan, ZHU Shifei, CHEN Fayu, WANG Jinghua. The Application of AI in Primary Care General Practitioners' Practice: a Perspective on Skin Disease Diagnosis and Disease Course Management [J]. Chinese General Practice, 2024, 27(31): 3884-3889. |
| [15] | LIU Jue, LIANG Wannian. Technological Innovations to Address Health Challenges [J]. Chinese General Practice, 2024, 27(28): 0-C4. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||