Chinese General Practice

Previous Articles     Next Articles

Analysis of the Impact of Multiple Chronic Diseases on the Risk of Age-related Macular Degeneration and Their Interaction Effects

  

  1. 1.School of Public Health,Cheeloo College of Medicine,Shandong University,Jinan 250012,China 2.National Institute of Health and Medical Data Science,Jinan 250003,China 3.Shandong Health and Medical Big Data Management Center,Jinan 250002,China 4.Talent Development Center,Taizhou National Medical High-tech Development Zone,Taizhou 225326,China 5.Institute of Data Science,Shandong University,Jinan 250100,China
  • Received:2024-09-29 Accepted:2024-12-25
  • Contact: CHI Weiwei,Researcher;E-mail:202259050001@sdu.edu.cn

多种慢性病对年龄相关性黄斑变性风险的影响及其交互效应研究

  

  1. 1.250012 山东省济南市,山东大学齐鲁医学院公共卫生学院 2.250003 山东省济南市,国家健康医疗大数据研究院 3.250002 山东省济南市,山东健康医疗大数据管理中心 4.225326 江苏省泰州市,泰州医药高新技术产业开发区人才发展中心 5.250100 山东省济南市,山东大学数据科学研究院
  • 通讯作者: 迟蔚蔚,研究员;E-mail:202259050001@sdu.edu.cn
  • 基金资助:
    四大慢病重大专项(2023ZD0503500)

Abstract: Background Age-related macular degeneration(AMD) is the leading cause of vision loss and impairment among individuals aged 50 and above worldwide,with an estimated 288 million people projected to be affected by 2040. Objective To investigate the association between various chronic diseases and AMD,analyze the interaction effects of different chronic disease combinations on AMD risk,and assess how the interaction between chronic diseases impacts AMD risk. Methods Based on the Cheeloo LEAD database,individuals aged 50 years and above were included. The AMD group was identified using ICD-10 coding(H35.3),and a 1:4 matching by age and gender was conducted to select a control group without AMD. Significant differences in baseline characteristics and chronic disease prevalence were found between the AMD and non-AMD groups. Multivariate Logistic regression models were used to assess the association between AMD and chronic conditions such as hypertension,diabetes,and heart disease. Collinearity was evaluated using the variance inflation factor(VIF)to ensure the robustness of the model. Interaction terms were introduced to evaluate the synergistic effects of different chronic disease combinations on AMD risk. Results A total of 16 780 participants were included in this study,with 3 356 in the AMD group and 13 424 in the control group. After adjusting for confounding factors,multivariate Logistic regression analysis showed that hypertension(OR=2.81,95%CI=2.59-3.04),heart disease(OR=2.02,95%CI=1.86-2.19),stroke(OR=1.82, 95%CI=1.66-1.99),diabetes(OR=2.72,95%CI=2.47-2.99),dyslipidemia(OR=2.01,95%CI=1.78-2.28),chronic gastric or digestive system diseases(OR=1.90,95%CI=1.72-2.10),chronic liver diseases(OR=2.29,95%CI=2.04- 2.57),emotional and mental disorders(OR=2.86,95%CI=2.49-3.29),and memory-related diseases(OR=1.86, 95%CI=1.52-2.28) were all significant risk factors for AMD(P<0.05). Interaction effect analysis revealed that the predicted probability of AMD was 0.4 when hypertension and diabetes coexisted;0.4 for the coexistence of diabetes and dyslipidemia;and 0.45 for the coexistence of chronic liver diseases and diabetes. The predicted probability of AMD was 0.3 for the combination of hypertension and heart disease,0.3 for the combination of stroke and heart disease,0.3 for the combination of chronic gastric diseases and chronic liver diseases,0.4 for the combination of emotional and mental disorders and memory-related diseases,and 0.45 for the combination of hypertension and emotional and mental disorders. Conclusion Hypertension,diabetes,chronic liver diseases,and other conditions were significantly associated with the occurrence of AMD. Notably,the combinations of chronic liver diseases and diabetes,emotional and mental disorders with memory-related diseases,and hypertension with diabetes had an even more pronounced impact on AMD.

Key words: Macular degeneration, Chronic diseases, Shandong Province, Case-control study, Root cause analysis, Interaction effect

摘要: 背景 年龄相关性黄斑变性(AMD)是全球50岁以上人群视力丧失和损伤的主要原因,预计到2040年将影响2.88亿人。目的 探讨多种慢性病与AMD之间的关联关系,分析不同的慢性病组合与AMD风险的交互效应,评估多种慢性病及其慢性病之间的相互作用对AMD发生风险的影响。方法 依托齐鲁全生命周期电子健康研究型数据库(CheelooLEAD),纳入数据库中2015—2023年具有健康档案体检信息、个人基本信息、诊断信息完整的50岁以上人群,按照ICD-10(H35.3)编码筛选AMD组。按照年龄、性别作为匹配项进行1∶4匹配,选取不患有AMD的人群为对照组。记录两组研究对象的人口基线特征及慢性病情况。采用多因素Logistic回归模型分析高血压、糖尿病、心脏病等慢性病与AMD的关联,并借助方差膨胀因子(VIF)检验共线性,确保模型稳健性。最后,引入交互项以评估不同慢性病组合对AMD风险的协同效应。结果 本研究共纳入16780人,其中AMD组3356人,对照组13424人。多因素Logistic回归分析结果显示,在调整混杂因素后,高血压(OR=2.81,95%CI=2.59~3.04)、心脏病(OR=2.02,95%CI=1.86~2.19)、脑卒中(OR=1.82,95%CI=1.66~1.99)、糖尿病(OR=2.72,95%CI=2.47~2.99)、血脂异常(OR=2.01,95%CI=1.78~2.28)、慢性胃部疾病或消化系统疾病(OR=1.90,95%CI=1.72~2.10)、慢性肝脏疾病(OR=2.29,95%CI=2.04~2.57)、情感及精神方面疾病(OR=2.86,95%CI=2.49~3.29)、与记忆相关的疾病(OR=1.86,95%CI=1.52~2.28)均是AMD患病的影响因素(P<0.05)。交互效应分析显示,高血压与糖尿病组合时,AMD的预测概率为0.4;糖尿病与血脂异常组合时,AMD的预测概率为0.4;慢性肝脏疾病与糖尿病组合时,AMD的预测概率为0.45;高血压与心脏病组合时,AMD的预测概率为0.3;脑卒中与心脏病组合时,AMD的预测概率为0.3;慢性胃部疾病与慢性肝脏疾病组合时,AMD的预测概率为0.3;情感及精神类疾病与记忆相关疾病组合时,AMD的预测概率为0.4;高血压与情感及精神类疾病组合时,AMD的预测概率为0.45。结论 高血压、糖尿病、慢性肝病等疾病均与AMD的发生有显著关联,特别是慢性肝脏疾病与糖尿病组合、情感与精神类疾病与记忆相关疾病组合、高血压和糖尿病慢性病组合其对AMD的影响更加明显。

关键词: 黄斑变性, 慢性病, 山东省, 病例对照研究, 影响因素分析, 交互效应

CLC Number: