Chinese General Practice ›› 2023, Vol. 26 ›› Issue (06): 760-768.DOI: 10.12114/j.issn.1007-9572.2022.0461
• Medical Information Research • Previous Articles Next Articles
Received:
2022-05-20
Revised:
2022-08-21
Published:
2023-02-20
Online:
2022-08-25
Contact:
WU Lei
About author:
通讯作者:
吴磊
作者简介:
基金资助:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chinagp.net/EN/10.12114/j.issn.1007-9572.2022.0461
检索步骤 | 检索式 | 文献数量(篇) |
---|---|---|
1# | esophag* (Topic) or oesophag* (Topic) or gullet (Topic) and Article OR Review (Document Type) and English (Language) | 103 423 |
2# | cancer* (Topic) or tumour* (Topic) or tumor* (Topic) or neoplas* (Topic) or onco* (Topic) or carcinoma* (Topic) and Article OR Review (Document Type) and English (Language) | 3 272 272 |
3# | 1# AND 2# | 54 077 |
4# | "artificial intelligen*" (Topic) or computational NEAR/5 intelligence (Topic) or expert* system* (Topic) or intelligent learning (Topic) or feature* extraction (Topic) or feature* mining (Topic) or feature* learning (Topic) or machine learning (Topic) or feature* selection (Topic) or unsupervised clustering (Topic) or image* segmentation (Topic) or supervised learning (Topic) or semantic segmentation (Topic) or deep network* (Topic) or bayes* network (Topic) or deep learning (Topic) or neural network* (Topic) or neural learning (Topic) or neural nets model (Topic) or artificial neural network (Topic) or data mining (Topic) or graph mining (Topic) or data clustering (Topic) or big data (Topic) or knowledge graph (Topic) or AI (Topic) and Article OR Review (Document Type) and English (Language) | 1 068 667 |
5# | 3# AND 4# | 1 074 |
Table 1 List of esophageal cancer studies using AI published from 2000 to 2022
检索步骤 | 检索式 | 文献数量(篇) |
---|---|---|
1# | esophag* (Topic) or oesophag* (Topic) or gullet (Topic) and Article OR Review (Document Type) and English (Language) | 103 423 |
2# | cancer* (Topic) or tumour* (Topic) or tumor* (Topic) or neoplas* (Topic) or onco* (Topic) or carcinoma* (Topic) and Article OR Review (Document Type) and English (Language) | 3 272 272 |
3# | 1# AND 2# | 54 077 |
4# | "artificial intelligen*" (Topic) or computational NEAR/5 intelligence (Topic) or expert* system* (Topic) or intelligent learning (Topic) or feature* extraction (Topic) or feature* mining (Topic) or feature* learning (Topic) or machine learning (Topic) or feature* selection (Topic) or unsupervised clustering (Topic) or image* segmentation (Topic) or supervised learning (Topic) or semantic segmentation (Topic) or deep network* (Topic) or bayes* network (Topic) or deep learning (Topic) or neural network* (Topic) or neural learning (Topic) or neural nets model (Topic) or artificial neural network (Topic) or data mining (Topic) or graph mining (Topic) or data clustering (Topic) or big data (Topic) or knowledge graph (Topic) or AI (Topic) and Article OR Review (Document Type) and English (Language) | 1 068 667 |
5# | 3# AND 4# | 1 074 |
Figure 2 VOSviewer-generated collaboration map of top 10 research countries related to esophageal cancer studies using artificial intelligence from 2000 to 2022
Figure 3 VOSviewer-generated collaboration map of institutions published more than 15 esophageal cancer studies using artificial intelligence from 2000 to 2022
Figure 4 VOSviewer-generated collaboration map of authors published more than 10 esophageal cancer studies using artificial intelligence from 2000 to 2022
序号 | 共被引作者 | 地区 | 共被引次数(次) | 总被引次数(次) | 中介中心性 |
---|---|---|---|---|---|
1 | Freddie Ian Bray | 法国 | 89 | 304 | 0 |
2 | Prateek Sharma | 美国 | 87 | 1 907 | 0.04 |
3 | Yoshimasa Horie | 日本 | 56 | 691 | 0.04 |
4 | Jacques Ferlay | 法国 | 53 | 748 | 0.01 |
5 | Jesper Lagergren | 瑞典 | 52 | 1 591 | 0.15 |
6 | Lambin Philippe | 比利时 | 46 | 562 | 0.04 |
7 | Rebecca L Siegel | 美国 | 46 | 417 | 0 |
8 | Hirasawa Toshiaki | 日本 | 45 | 1 025 | 0.06 |
9 | Nicholas James Shaheen | 美国 | 45 | 136 | 0.04 |
10 | Thomas William Rice | 美国 | 43 | 1 107 | 0.12 |
Table 2 Total co-citations of esophageal cancer studies using artificial intelligence from 2000 to 2022 by author (top 10)
序号 | 共被引作者 | 地区 | 共被引次数(次) | 总被引次数(次) | 中介中心性 |
---|---|---|---|---|---|
1 | Freddie Ian Bray | 法国 | 89 | 304 | 0 |
2 | Prateek Sharma | 美国 | 87 | 1 907 | 0.04 |
3 | Yoshimasa Horie | 日本 | 56 | 691 | 0.04 |
4 | Jacques Ferlay | 法国 | 53 | 748 | 0.01 |
5 | Jesper Lagergren | 瑞典 | 52 | 1 591 | 0.15 |
6 | Lambin Philippe | 比利时 | 46 | 562 | 0.04 |
7 | Rebecca L Siegel | 美国 | 46 | 417 | 0 |
8 | Hirasawa Toshiaki | 日本 | 45 | 1 025 | 0.06 |
9 | Nicholas James Shaheen | 美国 | 45 | 136 | 0.04 |
10 | Thomas William Rice | 美国 | 43 | 1 107 | 0.12 |
序号 | 文章题目 | 期刊名称 | 第一作者 | 出版年份(年) | 共被引次数(次) |
---|---|---|---|---|---|
1 | Global cancer statistics 2018:Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries | Ca-A Cancer Journal for Clinicians | BRAY | 2018 | 87 |
2 | Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks | Gastrointestinal Endoscopy | HORIE | 2019 | 56 |
3 | Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images | Gastric Cancer | HIRASAWA | 2018 | 43 |
4 | Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos) | Gastrointestinal Endoscopy | GUO | 2019 | 37 |
5 | Deep-learning system detects neoplasia in patients with barrett's esophagus with higher accuracy than endoscopists in a multistep training and validation study with benchmarking | Gastroenterology | DE GROOF | 2020 | 32 |
6 | Endoscopic detection and differentiation of esophageal lesions using a deep neural network | Gastrointestinal Endoscopy | OHMORI | 2020 | 32 |
7 | Using a deep learning system in endoscopy for screening of early esophageal squamous cell carcinoma (with video) | Gastrointestinal Endoscopy | CAI | 2019 | 31 |
8 | Computer-assisted diagnosis of early esophageal squamous cell carcinoma using narrow-band imaging magnifying endoscopy | Endoscopy | ZHAO | 2019 | 30 |
9 | Integrated genomic characterization of oesophageal carcinoma | Nature | KIM | 2017 | 30 |
10 | Cancer statistics in China,2015 | Ca-A Cancer Journal for Clinicians | CHEN | 2016 | 30 |
Table 3 The analysis of co-cited esophageal cancer studies using artificial intelligence from 2000 to 2022(top 10)
序号 | 文章题目 | 期刊名称 | 第一作者 | 出版年份(年) | 共被引次数(次) |
---|---|---|---|---|---|
1 | Global cancer statistics 2018:Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries | Ca-A Cancer Journal for Clinicians | BRAY | 2018 | 87 |
2 | Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks | Gastrointestinal Endoscopy | HORIE | 2019 | 56 |
3 | Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images | Gastric Cancer | HIRASAWA | 2018 | 43 |
4 | Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos) | Gastrointestinal Endoscopy | GUO | 2019 | 37 |
5 | Deep-learning system detects neoplasia in patients with barrett's esophagus with higher accuracy than endoscopists in a multistep training and validation study with benchmarking | Gastroenterology | DE GROOF | 2020 | 32 |
6 | Endoscopic detection and differentiation of esophageal lesions using a deep neural network | Gastrointestinal Endoscopy | OHMORI | 2020 | 32 |
7 | Using a deep learning system in endoscopy for screening of early esophageal squamous cell carcinoma (with video) | Gastrointestinal Endoscopy | CAI | 2019 | 31 |
8 | Computer-assisted diagnosis of early esophageal squamous cell carcinoma using narrow-band imaging magnifying endoscopy | Endoscopy | ZHAO | 2019 | 30 |
9 | Integrated genomic characterization of oesophageal carcinoma | Nature | KIM | 2017 | 30 |
10 | Cancer statistics in China,2015 | Ca-A Cancer Journal for Clinicians | CHEN | 2016 | 30 |
Figure 7 VOSviewer network visualization of the collinear map of keywords (frequency ≥ 50) in esophageal cancer studies using artificial intelligence from 2000 to 2022
序号 | 中心性 | 频率 | 年份(年) | 关键词 |
---|---|---|---|---|
1 | 0.31 | 16 | 2000 | 结直肠癌 |
2 | 0.23 | 71 | 2000 | 癌症 |
3 | 0.23 | 41 | 2000 | 上皮小细胞癌 |
4 | 0.19 | 49 | 2000 | 小细胞癌 |
5 | 0.19 | 6 | 2005 | 突变 |
6 | 0.18 | 47 | 2003 | 巴雷特食管癌 |
7 | 0.17 | 48 | 2000 | 食管癌 |
8 | 0.17 | 21 | 2001 | 乳腺癌 |
9 | 0.17 | 6 | 2001 | p53 |
10 | 0.13 | 25 | 2001 | 上皮组织癌 |
11 | 0.12 | 10 | 2003 | 肿瘤 |
12 | 0.11 | 23 | 2007 | 风险 |
13 | 0.11 | 8 | 2015 | 食管腺癌 |
Table 4 Keywords with centrality greater than 0.10 in esophageal cancer studies using artificial intelligence from 2000 to 2016
序号 | 中心性 | 频率 | 年份(年) | 关键词 |
---|---|---|---|---|
1 | 0.31 | 16 | 2000 | 结直肠癌 |
2 | 0.23 | 71 | 2000 | 癌症 |
3 | 0.23 | 41 | 2000 | 上皮小细胞癌 |
4 | 0.19 | 49 | 2000 | 小细胞癌 |
5 | 0.19 | 6 | 2005 | 突变 |
6 | 0.18 | 47 | 2003 | 巴雷特食管癌 |
7 | 0.17 | 48 | 2000 | 食管癌 |
8 | 0.17 | 21 | 2001 | 乳腺癌 |
9 | 0.17 | 6 | 2001 | p53 |
10 | 0.13 | 25 | 2001 | 上皮组织癌 |
11 | 0.12 | 10 | 2003 | 肿瘤 |
12 | 0.11 | 23 | 2007 | 风险 |
13 | 0.11 | 8 | 2015 | 食管腺癌 |
序号 | 中心性 | 频率 | 年份(年) | 关键词 | 序号 | 中心性 | 频率 | 年份(年) | 关键词 |
---|---|---|---|---|---|---|---|---|---|
1 | 0.24 | 11 | 2017 | 生物学标志物 | 14 | 0.14 | 20 | 2017 | 验证 |
2 | 0.22 | 18 | 2017 | 基因 | 15 | 0.13 | 36 | 2017 | 上皮组织癌 |
3 | 0.20 | 38 | 2017 | 表达 | 16 | 0.13 | 4 | 2020 | 计算机辅助诊断 |
4 | 0.19 | 19 | 2017 | 发育不良 | 17 | 0.13 | 26 | 2017 | 肺癌 |
5 | 0.18 | 15 | 2017 | 协助 | 18 | 0.13 | 13 | 2017 | 食管癌 |
6 | 0.18 | 6 | 2020 | 计算机辅助检测 | 19 | 0.13 | 2 | 2020 | CPR |
7 | 0.17 | 8 | 2019 | 准确度 | 20 | 0.13 | 4 | 2018 | 术前放化疗 |
8 | 0.17 | 10 | 2017 | 氟-18FDG断层扫描 | 21 | 0.12 | 4 | 2020 | 食管上皮小细胞癌 |
9 | 0.17 | 4 | 2017 | 肿瘤抑制因子 | 22 | 0.11 | 5 | 2021 | 生物信息学分析 |
10 | 0.16 | 11 | 2017 | 数据 | 23 | 0.11 | 42 | 2017 | CT检查 |
11 | 0.15 | 22 | 2017 | 结肠癌 | 24 | 0.11 | 4 | 2018 | 标志物 |
12 | 0.14 | 6 | 2017 | FDG断层扫描 | 25 | 0.11 | 41 | 2017 | 风险 |
13 | 0.14 | 11 | 2017 | 鉴别 | 26 | 0.11 | 2 | 2017 | 纹理特征 |
Table 5 Keywords with centrality over 0.10 in esophageal cancer studies using artificial intelligence from 2017 to 2022
序号 | 中心性 | 频率 | 年份(年) | 关键词 | 序号 | 中心性 | 频率 | 年份(年) | 关键词 |
---|---|---|---|---|---|---|---|---|---|
1 | 0.24 | 11 | 2017 | 生物学标志物 | 14 | 0.14 | 20 | 2017 | 验证 |
2 | 0.22 | 18 | 2017 | 基因 | 15 | 0.13 | 36 | 2017 | 上皮组织癌 |
3 | 0.20 | 38 | 2017 | 表达 | 16 | 0.13 | 4 | 2020 | 计算机辅助诊断 |
4 | 0.19 | 19 | 2017 | 发育不良 | 17 | 0.13 | 26 | 2017 | 肺癌 |
5 | 0.18 | 15 | 2017 | 协助 | 18 | 0.13 | 13 | 2017 | 食管癌 |
6 | 0.18 | 6 | 2020 | 计算机辅助检测 | 19 | 0.13 | 2 | 2020 | CPR |
7 | 0.17 | 8 | 2019 | 准确度 | 20 | 0.13 | 4 | 2018 | 术前放化疗 |
8 | 0.17 | 10 | 2017 | 氟-18FDG断层扫描 | 21 | 0.12 | 4 | 2020 | 食管上皮小细胞癌 |
9 | 0.17 | 4 | 2017 | 肿瘤抑制因子 | 22 | 0.11 | 5 | 2021 | 生物信息学分析 |
10 | 0.16 | 11 | 2017 | 数据 | 23 | 0.11 | 42 | 2017 | CT检查 |
11 | 0.15 | 22 | 2017 | 结肠癌 | 24 | 0.11 | 4 | 2018 | 标志物 |
12 | 0.14 | 6 | 2017 | FDG断层扫描 | 25 | 0.11 | 41 | 2017 | 风险 |
13 | 0.14 | 11 | 2017 | 鉴别 | 26 | 0.11 | 2 | 2017 | 纹理特征 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
中共中央办公厅 国务院办公厅印发《关于进一步加强科研诚信建设的若干意见》[EB/OL].(2018-05-30)[2022-04-30].
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
科技部办公厅. 科技部办公厅关于加强新型冠状病毒肺炎科技攻关项目管理有关事项的通知[J]. 现代养生,2020,20(S1):6.
|
[1] | LIU Ailing, ZHOU Jingjing, LI Chengcheng, HE Kaiyue, LIANG Shanshan, ZHOU Shangcheng. Analysis of the Disease Burden Trends and Death Projections for Esophageal Cancer Attributable to Tobacco in China from 1990 to 2019 [J]. Chinese General Practice, 2023, 26(36): 4587-4594. |
[2] | ZHONG Pingping, NAN Yayun, PENG Linlin, ZHOU Yuting, CHEN Qiong. A Bibliometrics Analysis of Polypharmacy in the Elderly from 2003 to 2022 [J]. Chinese General Practice, 2023, 26(35): 4404-4411. |
[3] | XU Jian, DAI Fangfang, PAN Wenlei, HUANG Qian, LU Ping, WANG Jianfeng, JIA Huan, YANG Yuqi, HUANG Jiaoling. Visual Analysis of Hotspots and Cutting-edge Trends of Community TCM Service Research in China in the Context of Healthy China [J]. Chinese General Practice, 2023, 26(34): 4343-4350. |
[4] | ZHANG Jifang, CHEN Fang, TANG Jiawen, LI Hongliang. Predictive Value of Tumor Budding and Tumor-infiltrating Lymphocytes on Lymph Node Metastasis of Esophageal Squamous Cell Carcinoma [J]. Chinese General Practice, 2023, 26(32): 4038-4042. |
[5] | WANG Min, GUO Wenjun, CHEN Yongzhen, FENG Xinyu, TANG Zhongquan, ZHAO Xiaomin, OU Ting, DAI Xinyu, LI Yuntao. Bibliometrics and Visualization Analysis of Medically Unexplained Physical Symptoms Based on Web of Science Database [J]. Chinese General Practice, 2023, 26(31): 3930-3938. |
[6] | ZHANG Ming, XU Jing, SUN Zhenhua, ZHAO Wenhao, MA Yingqian, ZHANG Jianqiao, SHEN Haiping. Improvement of Nutritional Status of Elderly Patients with Severe Obstruction Esophageal Carcinoma by Image-guided Photodynamic Therapy [J]. Chinese General Practice, 2023, 26(30): 3780-3784. |
[7] | LI Jilei, LI Honglin, XU Yanchao, LIU Yanan, CHEN Mengli, SHAO Shuai, MA Chunzheng. Clinical Study on the Combination of Xiaotan Huayu Tongyi Granules, Channel Kaijie Pills and Chemotherapy in the Treatment of Esophageal Cancer [J]. Chinese General Practice, 2023, 26(30): 3759-3764. |
[8] | ZHENG Yuling, ZHANG Yaling, LIU Huaimin, XU Yanchao, JIA Xiaolin, LI Junsai, HE Wenlong, TONG Xinduo, QIN Shanwen, ZHANG Lihan. Clinical Observation of Dingxiang Guanshitong Hanhua Pills Alone and Its Combination with Fugui Guanshitong Granules in the Treatment of Advanced Esophageal Cancer [J]. Chinese General Practice, 2023, 26(30): 3765-3771. |
[9] | XUE Shan, LI Laiyou, LIANG Junli, JIN Yinghui, WEI Shuyan. The Efficacy and Safety of Home Enteral Nutrition in Patients with Esophageal Cancer: a Meta-analysis [J]. Chinese General Practice, 2023, 26(20): 2540-2547. |
[10] | ZHANG Yushuang, KONG Lingyang, GUAN Jiachang, LI Jianbo, WANG Yiran, WANG Yu, LI Jing. 16S rDNA Sequence Analysis of the Characteristics of Gut Flora in Patients with Esophageal Squamous Cell Carcinoma [J]. Chinese General Practice, 2023, 26(20): 2496-2502. |
[11] | CHEN Long, ZENG Kai, LI Sha, TAO Lu, LIANG Wei, WANG Haocen, YANG Rumei. Causes and Countermeasures of Algorithmic Bias and Health Inequity [J]. Chinese General Practice, 2023, 26(19): 2423-2427. |
[12] | GUO Tianci, CHEN Jixin, YU Weijie, LIU Aifeng. Recent Developments in the Application of Artificial Intelligence in the Diagnosis and Treatment of Osteoarthritis [J]. Chinese General Practice, 2023, 26(19): 2428-2433. |
[13] | ZHAI Leilei, ZHAO Shupeng, YAO Ping. Meta-analysis of the Relationship between Dietary Inflammatory Index and Upper Gastrointestinal Cancer Risks [J]. Chinese General Practice, 2023, 26(18): 2286-2292. |
[14] | SHEN Huiwen, LIN Yongzhong, CHEN Shuliang, ZHANG Lihong, MA Chunye, MA Deyuan, ZHANG Ce. Precise Thrombolytic Treatment for Stroke Using AI-based Algorithms: a Real-world Study [J]. Chinese General Practice, 2023, 26(17): 2070-2077. |
[15] | YAN Yuge, HUANG Jiaoling. Visualization Analysis of Primary Healthcare Research during the COVID-19 Pandemic [J]. Chinese General Practice, 2023, 26(16): 2027-2035. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||