[97] |
LI C W, QIU M L, CHANG L L,et al. The osteoprotective role of USP26 in coordinating bone formation and resorption[J]. Cell Death Differ, 2022, 29(6):1123-1136. DOI: 10.1038/s41418-021-00904-x.
|
[98] |
BAEK D, PARK K H, LEE K M,et al. Ubiquitin-specific protease 53 promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells[J]. Cell Death Dis, 2021, 12(3):238. DOI: 10.1038/s41419-021-03517-x.
|
[99] |
CRANE J L, CAO X. Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling[J]. J Clin Invest, 2014, 124(2):466-472. DOI: 10.1172/JCI70050.
|
[100] |
TIE K, CAI J H, QIN J,et al. Nanog/NFATc1/Osterix signaling pathway-mediated promotion of bone formation at the tendon-bone interface after ACL reconstruction with De-BMSCs transplantation[J]. Stem Cell Res Ther, 2021, 12(1):576. DOI: 10.1186/s13287-021-02643-9.
|
[101] |
KIM Y J, PARK K H, LEE K M,et al. Deubiquitinating enzyme USP7 is required for self-renewal and multipotency of human bone marrow-derived mesenchymal stromal cells[J]. Int J Mol Sci, 2022, 23(15):8674. DOI: 10.3390/ijms23158674.
|
[102] |
LU X H, ZHANG Y T, ZHENG Y,et al. The miRNA-15b/USP7/KDM6B axis engages in the initiation of osteoporosis by modulating osteoblast differentiation and autophagy[J]. J Cell Mol Med, 2021, 25(4):2069-2081. DOI: 10.1111/jcmm.16139.
|
[103] |
TIAN H L, CHEN F, WANG Y F,et al. Nur77 prevents osteoporosis by inhibiting the NF-κB signalling pathway and osteoclast differentiation[J]. J Cell Mol Med, 2022, 26(8):2163-2176. DOI: 10.1111/jcmm.17238.
|
[104] |
LIN A Y, KITAURA H, OHORI F,et al.(D-Ala2)GIP inhibits inflammatory bone resorption by suppressing TNF-α and RANKL expression and directly impeding osteoclast formation[J]. Int J Mol Sci, 2024, 25(5):2555. DOI: 10.3390/ijms25052555.
|
[105] |
LI Q W, WANG M Y, XUE H X,et al. Ubiquitin-specific protease 34 inhibits osteoclast differentiation by regulating NF-κB signaling[J]. J Bone Miner Res, 2020, 35(8):1597-1608. DOI: 10.1002/jbmr.4015.
|
[106] |
LIU L, JIN R R, DUAN J M,et al. Bioactive iron oxide nanoparticles suppress osteoclastogenesis and ovariectomy-induced bone loss through regulating the TRAF6-p62-CYLD signaling complex[J]. Acta Biomater, 2020, 103:281-292. DOI: 10.1016/j.actbio.2019.12.022.
|
[107] |
SHEN J, FU B, WU Y,et al. USP25 expression in peripheral blood mononuclear cells is associated with bone mineral density in women[J]. Front Cell Dev Biol, 2021, 9:811611. DOI: 10.3389/fcell.2021.811611.
|
[108] |
YU T, YOU X M, ZHOU H C,et al. p53 plays a central role in the development of osteoporosis[J]. Aging, 2020, 12(11):10473-10487. DOI: 10.18632/aging.103271.
|
[109] |
WEI Y, FU J Y, WU W J,et al. Estrogen prevents cellular senescence and bone loss through Usp10-dependent p53 degradation in osteocytes and osteoblasts:the role of estrogen in bone cell senescence[J]. Cell Tissue Res, 2021, 386(2):297-308. DOI: 10.1007/s00441-021-03496-7.
|
[110] |
ZHOU P Y, XIA D M, WANG Y,et al. Matrine derivate MASM protects murine MC3T3-E1 osteoblastic cells against dexamethasone-induced apoptosis via the regulation of USP14/p53[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1):3720-3728. DOI: 10.1080/21691401.2019.1664563.
|
[111] |
LORENZO C, DELGADO P, BUSSE C E,et al. ALDH4A1 is an atherosclerosis auto-antigen targeted by protective antibodies[J]. Nature, 2021, 589(7841):287-292. DOI: 10.1038/s41586-020-2993-2.
|
[112] |
LI W J, JIN K H, LUO J C,et al. NF-κB and its crosstalk with endoplasmic reticulum stress in atherosclerosis[J]. Front Cardiovasc Med, 2022, 9:988266. DOI: 10.3389/fcvm.2022.988266.
|
[113] |
KARUNAKARAN D, NGUYEN M A, GEOFFRION M,et al. RIPK1 expression associates with inflammation in early atherosclerosis in humans and can be therapeutically silenced to reduce NF-κB activation and atherogenesis in mice[J]. Circulation, 2021, 143(2):163-177. DOI: 10.1161/CIRCULATIONAHA.118.038379.
|
[114] |
AKSENTIJEVICH I, ZHOU Q. NF-κB pathway in autoinflammatory diseases:dysregulation of protein modifications by ubiquitin defines a new category of autoinflammatory diseases[J]. Front Immunol, 2017, 8:399. DOI: 10.3389/fimmu.2017.00399.
|
[1] |
SHENG X P, XIA Z X, YANG H T,et al. The ubiquitin codes in cellular stress responses[J]. Protein Cell, 2024, 15(3):157-190. DOI: 10.1093/procel/pwad045.
|
[2] |
TRACZ M, BIALEK W. Beyond K48 and K63:non-canonical protein ubiquitination[J]. Cell Mol Biol Lett, 2021, 26(1):1. DOI: 10.1186/s11658-020-00245-6.
|
[3] |
TAWO R, POKRZYWA W, KEVEI É,et al. The ubiquitin ligase CHIP integrates proteostasis and aging by regulation of insulin receptor turnover[J]. Cell, 2017, 169(3):470-482.e13. DOI: 10.1016/j.cell.2017.04.003.
|
[4] |
HÖHFELD J, HOPPE T. Ub and down:ubiquitin exercise for the elderly[J]. Trends Cell Biol, 2018, 28(7):512-522. DOI: 10.1016/j.tcb.2018.03.002.
|
[5] |
HU S S, WANG L. The potential role of ubiquitination and deubiquitination in melanogenesis[J]. Exp Dermatol, 2023, 32(12):2062-2071. DOI: 10.1111/exd.14953.
|
[6] |
CLAGUE M J, BARSUKOV I, COULSON J M,et al. Deubiquitylases from genes to organism[J]. Physiol Rev, 2013, 93(3):1289-1315. DOI: 10.1152/physrev.00002.2013.
|
[7] |
REHMAN S A A, KRISTARIYANTO Y A, CHOI S Y,et al. MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes[J]. Mol Cell, 2016, 63(1):146-155. DOI: 10.1016/j.molcel.2016.05.009.
|
[8] |
NIJMAN S M B, LUNA-VARGAS M P A, VELDS A,et al. A genomic and functional inventory of deubiquitinating enzymes[J]. Cell, 2005, 123(5):773-786. DOI: 10.1016/j.cell.2005.11.007.
|
[9] |
KOMANDER D, CLAGUE M J, URBÉ S. Breaking the chains:structure and function of the deubiquitinases[J]. Nat Rev Mol Cell Biol, 2009, 10(8):550-563. DOI: 10.1038/nrm2731.
|
[115] |
JEAN-CHARLES P Y, WU J H, ZHANG L S,et al. USP20(ubiquitin-specific protease 20)inhibits TNF(tumor necrosis factor)-triggered smooth muscle cell inflammation and attenuates atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2018, 38(10):2295-2305. DOI: 10.1161/ATVBAHA.118.311071.
|
[116] |
FU Y, QIU J X, WU J H,et al. USP14-mediated NLRC5 upregulation inhibits endothelial cell activation and inflammation in atherosclerosis[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2023, 1868(5):159258. DOI: 10.1016/j.bbalip.2022.159258.
|
[117] |
YANG X H, WANG C, ZHU G L,et al. METTL14/YTHDF1 axis-modified UCHL5 aggravates atherosclerosis by activating the NLRP3 inflammasome[J]. Exp Cell Res, 2023, 427(2):113587. DOI: 10.1016/j.yexcr.2023.113587.
|
[118] |
WEN S Y, ZHI X Y, LIU H X,et al. Is the suppression of CD36 a promising way for atherosclerosis therapy?[J]. Biochem Pharmacol, 2024, 219:115965. DOI: 10.1016/j.bcp.2023.115965.
|
[119] |
XIA X H, XU Q, LIU M K,et al. Deubiquitination of CD36 by UCHL1 promotes foam cell formation[J]. Cell Death Dis, 2020, 11(8):636. DOI: 10.1038/s41419-020-02888-x.
|
[120] |
ZENG M, WEI X, HE Y L,et al. Ubiquitin-specific protease 11-mediated CD36 deubiquitination acts on C1q/TNF-related protein 9 against atherosclerosis[J]. ESC Heart Fail, 2023, 10(4):2499-2509. DOI: 10.1002/ehf2.14423.
|
[121] |
GROOTAERT M O J, FINIGAN A, FIGG N L,et al. SIRT6 protects smooth muscle cells from senescence and reduces atherosclerosis[J]. Circ Res, 2021, 128(4):474-491. DOI: 10.1161/CIRCRESAHA.120.318353.
|
[122] |
YANG Z, HUANG Y J, ZHU L,et al. SIRT6 promotes angiogenesis and hemorrhage of carotid plaque via regulating HIF-1α and reactive oxygen species[J]. Cell Death Dis, 2021, 12(1):77. DOI: 10.1038/s41419-020-03372-2.
|
[123] |
LIANG J R, HUANG G L, LIU X,et al. Reciprocal interactions between alveolar progenitor dysfunction and aging promote lung fibrosis[J]. eLife, 2023, 12:e85415. DOI: 10.7554/eLife.85415.
|
[10] |
WANG F, NING S, YU B,et al. USP14:structure,function,and target inhibition[J]. Front Pharmacol, 2021, 12:801328. DOI: 10.3389/fphar.2021.801328.
|
[11] |
PYEON D, TIMANI K A, GULRAIZ F,et al. Function of ubiquitin(Ub)specific protease 15(USP15)in HIV-1 replication and viral protein degradation[J]. Virus Res, 2016, 223:161-169. DOI: 10.1016/j.virusres.2016.07.009.
|
[12] |
MORROW M E, KIM M I, RONAU J A,et al. Stabilization of an unusual salt bridge in ubiquitin by the extra C-terminal domain of the proteasome-associated deubiquitinase UCH37 as a mechanism of its exo specificity[J]. Biochemistry, 2013, 52(20):3564-3578. DOI: 10.1021/bi4003106.
|
[13] |
LI L H, XU K, BAI X,et al. UCHL1 regulated by Sp1 ameliorates cochlear hair cell senescence and oxidative damage[J]. Exp Ther Med, 2023, 25(2):94. DOI: 10.3892/etm.2023.11793.
|
[14] |
CARTIER A E, UBHI K, SPENCER B,et al. Differential effects of UCHL1 modulation on alpha-synuclein in PD-like models of alpha-synucleinopathy[J]. PLoS One, 2012, 7(4):e34713. DOI: 10.1371/journal.pone.0034713.
|
[15] |
ZHU Q, FU Y S, LI L,et al. The functions and regulation of Otubains in protein homeostasis and diseases[J]. Ageing Res Rev, 2021, 67:101303. DOI: 10.1016/j.arr.2021.101303.
|
[16] |
MEVISSEN T E T, HOSPENTHAL M K, GEURINK P P,et al. OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis[J]. Cell, 2013, 154(1):169-184. DOI: 10.1016/j.cell.2013.05.046.
|
[17] |
KUMARI R, KUMAR R, KUMAR S,et al. Amyloid aggregates of the deubiquitinase OTUB1 are neurotoxic,suggesting that they contribute to the development of Parkinson's disease[J]. J Biol Chem, 2020, 295(11):3466-3484. DOI: 10.1074/jbc.RA119.009546.
|
[18] |
ZHANG Y, HU R M, WU H J,et al. OTUB1 overexpression in mesangial cells is a novel regulator in the pathogenesis of glomerulonephritis through the decrease of DCN level[J]. PLoS One, 2012, 7(1):e29654. DOI: 10.1371/journal.pone.0029654.
|
[19] |
LI X Y, MAO X F, TANG X Q,et al. Regulation of Gli2 stability by deubiquitinase OTUB2[J]. Biochem Biophys Res Commun, 2018, 505(1):113-118. DOI: 10.1016/j.bbrc.2018.09.071.
|
[20] |
BISSERIER M, MILARA J, ABDELDJEBBAR Y,et al. AAV1.SERCA2a gene therapy reverses pulmonary fibrosis by blocking the STAT3/FOXM1 pathway and promoting the SNON/SKI axis[J]. Mol Ther, 2020, 28(2):394-410. DOI: 10.1016/j.ymthe.2019.11.027
|
[21] |
ZENG C M, ZHAO C X, GE F J,et al. Machado-Joseph deubiquitinases:from cellular functions to potential therapy targets[J]. Front Pharmacol, 2020, 11:1311. DOI: 10.3389/fphar.2020.01311.
|
[22] |
|
[23] |
CAO S Y, ENGILBERGE S, GIRARD E,et al. Structural insight into ubiquitin-like protein recognition and oligomeric states of JAMM/MPN+ proteases[J]. Structure, 2017, 25(6):823-833.e6. DOI: 10.1016/j.str.2017.04.002.
|
[24] |
ABDUL REHMAN S A, ARMSTRONG L A, LANGE S M,et al. Mechanism of activation and regulation of deubiquitinase activity in MINDY1 and MINDY2[J]. Mol Cell, 2021, 81(20):4176-4190.e6. DOI: 10.1016/j.molcel.2021.08.024.
|
[25] |
KWASNA D, ABDUL REHMAN S A, NATARAJAN J,et al. Discovery and characterization of ZUFSP/ZUP1,a distinct deubiquitinase class important for genome stability[J]. Mol Cell, 2018, 70(1):150-164.e6. DOI: 10.1016/j.molcel.2018.02.023.
|
[26] |
HAAHR P, BORGERMANN N, GUO X H,et al. ZUFSP deubiquitylates K63-linked polyubiquitin chains to promote genome stability[J]. Mol Cell, 2018, 70(1):165-174.e6. DOI: 10.1016/j.molcel.2018.02.024.
|
[27] |
AGING BIOMARKER C, BAO H, CAO J,et al. Biomarkers of aging[J]. Sci China Life Sci, 2023, 66(5):893-1066. DOI: 10.1007/s11427-023-2305-0.
|
[124] |
FERNÁNDEZ Á F, SEBTI S, WEI Y J,et al. Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice[J]. Nature, 2018, 558(7708):136-140. DOI: 10.1038/s41586-018-0162-7.
|
[125] |
NAKKAS H, OCAL B G, KIPEL S,et al. Ubiquitin proteasome system and autophagy associated proteins in human testicular tumors[J]. Tissue Cell, 2021, 71:101513. DOI: 10.1016/j.tice.2021.101513.
|
[126] |
GENG J, HUANG X X, LI Y,et al. Down-regulation of USP13 mediates phenotype transformation of fibroblasts in idiopathic pulmonary fibrosis[J]. Respir Res, 2015, 16:124. DOI: 10.1186/s12931-015-0286-3.
|
[127] |
LIU Y, LI Z, XIAO H J,et al. USP13 deficiency impairs autophagy and facilitates age-related lung fibrosis[J]. Am J Respir Cell Mol Biol, 2023, 68(1):49-61. DOI: 10.1165/rcmb.2022-0002OC.
|
[128] |
PANYAIN N, GODINAT A, LANYON-HOGG T,et al. Discovery of a potent and selective covalent inhibitor and activity-based probe for the deubiquitylating enzyme UCHL1,with antifibrotic activity[J]. J Am Chem Soc, 2020, 142(28):12020-12026. DOI: 10.1021/jacs.0c04527.
|
[129] |
SCHNEIDER J L, ROWE J H, GARCIA-DE-ALBA C,et al. The aging lung:Physiology,disease,and immunity[J]. Cell, 2021, 184(8):1990-2019. DOI: 10.1016/j.cell.2021.03.005.
|
[130] |
VILGELM A E, COBB P, MALIKAYIL K,et al. MDM2 antagonists counteract drug-induced DNA damage[J]. EBioMedicine, 2017, 24:43-55. DOI: 10.1016/j.ebiom.2017.09.016.
|
[131] |
LESSEL D, WU D Y, TRUJILLO C,et al. Dysfunction of the MDM2/p53 axis is linked to premature aging[J]. J Clin Invest, 2017, 127(10):3598-3608. DOI: 10.1172/JCI92171.
|
[132] |
HE J S, BAOYINNA B, TALEB S J,et al. USP13 regulates cell senescence through mediating MDM2 stability[J]. Life Sci, 2023, 331:122044. DOI: 10.1016/j.lfs.2023.122044.
|
[28] |
LOTTES E N, COX D N. Homeostatic roles of the proteostasis network in dendrites[J]. Front Cell Neurosci, 2020, 14:264. DOI: 10.3389/fncel.2020.00264.
|
[29] |
LI Y M, TIAN X T, LUO J Y,et al. Molecular mechanisms of aging and anti-aging strategies[J]. Cell Commun Signal, 2024, 22(1):285. DOI: 10.1186/s12964-024-01663-1.
|
[30] |
FELECIANO D R, JUENEMANN K, IBURG M,et al. Crosstalk between chaperone-mediated protein disaggregation and proteolytic pathways in aging and disease[J]. Front Aging Neurosci, 2019, 11:9. DOI: 10.3389/fnagi.2019.00009.
|
[31] |
CHEN Y R, HAREL I, SINGH P P,et al. Tissue-specific landscape of protein aggregation and quality control in an aging vertebrate[J]. Dev Cell, 2024, 59(14):1892-1911.e13. DOI: 10.1016/j.devcel.2024.04.014.
|
[32] |
LIEBL M P, HOPPE T. It's all about talking:two-way communication between proteasomal and lysosomal degradation pathways via ubiquitin[J]. Am J Physiol Cell Physiol, 2016, 311(2):C166-178. DOI: 10.1152/ajpcell.00074.2016.
|
[33] |
BLASIAK J, PAWLOWSKA E, SZCZEPANSKA J,et al. Interplay between autophagy and the ubiquitin-proteasome system and its role in the pathogenesis of age-related macular degeneration[J]. Int J Mol Sci, 2019, 20(1):210. DOI: 10.3390/ijms20010210.
|
[34] |
CHOI B, LIM C, LEE H,et al. Neuroprotective effects of linear ubiquitin E3 ligase against aging-induced DNA damage and amyloid β neurotoxicity in the brain of Drosophila melanogaster[J]. Biochem Biophys Res Commun, 2022, 637:196-202. DOI: 10.1016/j.bbrc.2022.11.032.
|
[35] |
ZHANG Z Y, HARISCHANDRA D S, WANG R F,et al. TRIM11 protects against tauopathies and is down-regulated in Alzheimer's disease[J]. Science, 2023, 381(6656):eadd6696. DOI: 10.1126/science.add6696.
|
[36] |
LEE B H, LU Y, PRADO M A,et al. USP14 deubiquitinates proteasome-bound substrates that are ubiquitinated at multiple sites[J]. Nature, 2016, 532(7599):398-401. DOI: 10.1038/nature17433.
|
[133] |
XIE M C, LU C, WANG J Y,et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies[J]. Nat Med, 2014, 20(12):1472-1478. DOI: 10.1038/nm.3733.
|
[134] |
BALASUBRAMANI A, LARJO A, BASSEIN J A,et al. Cancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1-BAP1 complex[J]. Nat Commun, 2015, 6:7307. DOI: 10.1038/ncomms8307.
|
[135] |
ASADA S, GOYAMA S, INOUE D,et al. Mutant ASXL1 cooperates with BAP1 to promote myeloid leukaemogenesis[J]. Nat Commun, 2018, 9(1):2733. DOI: 10.1038/s41467-018-05085-9.
|
[136] |
SAHTOE D D, VAN DIJK W J, EKKEBUS R,et al. BAP1/ASXL1 recruitment and activation for H2A deubiquitination[J]. Nat Commun, 2016, 7:10292. DOI: 10.1038/ncomms10292.
|
[137] |
FUJINO T, GOYAMA S, SUGIURA Y,et al. Mutant ASXL1 induces age-related expansion of phenotypic hematopoietic stem cells through activation of Akt/mTOR pathway[J]. Nat Commun, 2021, 12(1):1826. DOI: 10.1038/s41467-021-22053-y.
|
[138] |
CHENG Y J, ZHUANG Z, MIAO Y L,et al. Identification of YCH2823 as a novel USP7 inhibitor for cancer therapy[J]. Biochem Pharmacol, 2024, 222:116071. DOI: 10.1016/j.bcp.2024.116071.
|
[139] |
GU Y H, REN K W, WANG Y,et al. Administration of USP7 inhibitor P22077 inhibited cardiac hypertrophy and remodeling in Ang II-induced hypertensive mice[J]. Front Pharmacol, 2022, 13:1021361. DOI: 10.3389/fphar.2022.1021361.
|
[140] |
LEGER P R, HU D X, BIANNIC B,et al. Discovery of potent,selective,and orally bioavailable inhibitors of USP7 with in vivo antitumor activity[J]. J Med Chem, 2020, 63(10):5398-5420. DOI: 10.1021/acs.jmedchem.0c00245.
|
[141] |
YUAN P, ZHOU L, ZHANG X N,et al. UCH-L1 inhibitor LDN-57444 hampers mouse oocyte maturation by regulating oxidative stress and mitochondrial function and reducing ERK1/2 expression[J]. Biosci Rep, 2020, 40(10):BSR20201308. DOI: 10.1042/BSR20201308.
|
[37] |
CSIZMADIA T, LŐW P. The role of deubiquitinating enzymes in the various forms of autophagy[J]. Int J Mol Sci, 2020, 21(12):4196. DOI: 10.3390/ijms21124196.
|
[38] |
BENVEGNÙ S, MATEO M I, PALOMER E,et al. Aging triggers cytoplasmic depletion and nuclear translocation of the E3 ligase mahogunin:a function for ubiquitin in neuronal survival[J]. Mol Cell, 2017, 66(3):358-372.e7. DOI: 10.1016/j.molcel.2017.04.005.
|
[39] |
KOYUNCU S, LOUREIRO R, LEE H J,et al. Rewiring of the ubiquitinated proteome determines ageing in C. elegans[J]. Nature, 2021, 596(7871):285-290. DOI: 10.1038/s41586-021-03781-z.
|
[40] |
GUO Y, GUAN T, SHAFIQ K,et al. Mitochondrial dysfunction in aging[J]. Ageing Res Rev, 2023, 88:101955. DOI: 10.1016/j.arr.2023.101955.
|
[41] |
MIWA S, KASHYAP S, CHINI E,et al. Mitochondrial dysfunction in cell senescence and aging[J]. J Clin Invest, 2022, 132(13):e158447. DOI: 10.1172/JCI158447.
|
[42] |
FRIEDLANDER J E, SHEN N, ZENG A Z,et al. Failure to guard:mitochondrial protein quality control in cancer[J]. Int J Mol Sci, 2021, 22(15):8306. DOI: 10.3390/ijms22158306.
|
[43] |
JADIYA P, TOMAR D. Mitochondrial protein quality control mechanisms[J]. Genes, 2020, 11(5):563. DOI: 10.3390/genes11050563.
|
[44] |
HAN R, LIU Y T, LI S H,et al. PINK1-PRKN mediated mitophagy:differences between in vitro and in vivo models[J]. Autophagy, 2023, 19(5):1396-1405. DOI: 10.1080/15548627.2022.2139080.
|
[45] |
HOSHINO A, WANG W J, WADA S,et al. The ADP/ATP translocase drives mitophagy independent of nucleotide exchange[J]. Nature, 2019, 575(7782):375-379. DOI: 10.1038/s41586-019-1667-4.
|
[142] |
KOOIJ R, LIU S J, SAPMAZ A,et al. Small-molecule activity-based probe for monitoring ubiquitin C-terminal hydrolase L1(UCHL1)activity in live cells and zebrafish embryos[J]. J Am Chem Soc, 2020, 142(39):16825-16841. DOI: 10.1021/jacs.0c07726.
|
[143] |
VAN DER WAL L, BEZSTAROSTI K, DEMMERS J A A. A ubiquitinome analysis to study the functional roles of the proteasome associated deubiquitinating enzymes USP14 and UCH37[J]. J Proteomics, 2022, 262:104592. DOI: 10.1016/j.jprot.2022.104592.
|
[144] |
ZHANG F C, XU R Q, CHAI R J,et al. Deubiquitinase inhibitor b-AP15 attenuated LPS-induced inflammation via inhibiting ERK1/2,JNK,and NF-kappa B[J]. Front Mol Biosci, 2020, 7:49. DOI: 10.3389/fmolb.2020.00049.
|
[145] |
GUBAT J, SELVARAJU K, SJÖSTRAND L,et al. Comprehensive target screening and cellular profiling of the cancer-active compound b-AP15 indicate abrogation of protein homeostasis and organelle dysfunction as the primary mechanism of action[J]. Front Oncol, 2022, 12:852980. DOI: 10.3389/fonc.2022.852980.
|
[146] |
MOFERS A, PEREGO P, SELVARAJU K,et al. Analysis of determinants for in vitro resistance to the small molecule deubiquitinase inhibitor b-AP15[J]. PLoS One, 2019, 14(10):e0223807. DOI: 10.1371/journal.pone.0223807.
|
[147] |
ROWINSKY E K, PANER A, BERDEJA J G,et al. Phase 1 study of the protein deubiquitinase inhibitor VLX1570 in patients with relapsed and/or refractory multiple myeloma[J]. Invest New Drugs, 2020, 38(5):1448-1453. DOI: 10.1007/s10637-020-00915-4.
|
[148] |
WANG Y W, JIANG Y X, DING S,et al. Small molecule inhibitors reveal allosteric regulation of USP14 via steric blockade[J]. Cell Res, 2018, 28(12):1186-1194. DOI: 10.1038/s41422-018-0091-x.
|
[149] |
WANG X, BAO Y, DONG Z H,et al. WP1130 attenuates cisplatin resistance by decreasing P53 expression in non-small cell lung carcinomas[J]. Oncotarget, 2017, 8(30):49033-49043. DOI: 10.18632/oncotarget.16931.
|
[150] |
LUO H K, KRIGMAN J, ZHANG R H,et al. Pharmacological inhibition of USP30 activates tissue-specific mitophagy[J]. Acta Physiol, 2021, 232(3):e13666. DOI: 10.1111/apha.13666.
|
[46] |
FANG T S Z, SUN Y, PEARCE A C,et al. Knockout or inhibition of USP30 protects dopaminergic neurons in a Parkinson's disease mouse model[J]. Nat Commun, 2023, 14(1):7295. DOI: 10.1038/s41467-023-42876-1.
|
[47] |
CUNNINGHAM C N, BAUGHMAN J M, PHU L,et al. USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria[J]. Nat Cell Biol, 2015, 17(2):160-169. DOI: 10.1038/ncb3097.
|
[48] |
LIANG J R, MARTINEZ A, LANE J D,et al. USP30 deubiquitylates mitochondrial Parkin substrates and restricts apoptotic cell death[J]. EMBO Rep, 2015, 16(5):618-627. DOI: 10.15252/embr.201439820.
|
[49] |
MARCASSA E, KALLINOS A, JARDINE J,et al. Dual role of USP30 in controlling basal pexophagy and mitophagy[J]. EMBO Rep, 2018, 19(7):e45595. DOI: 10.15252/embr.201745595.
|
[50] |
PAN W, WANG Y W, BAI X Y,et al. Deubiquitinating enzyme USP30 negatively regulates mitophagy and accelerates myocardial cell senescence through antagonism of Parkin[J]. Cell Death Discov, 2021, 7(1):187. DOI: 10.1038/s41420-021-00546-5.
|
[51] |
SHABALINA I G, EDGAR D, GIBANOVA N,et al. Enhanced ROS production in mitochondria from prematurely aging mtDNA mutator mice[J]. Biochemistry, 2024, 89(2):279-298. DOI: 10.1134/S0006297924020081.
|
[52] |
ELORZA A A, SOFFIA J P. mtDNA heteroplasmy at the core of aging-associated heart failure. an integrative view of OXPHOS and mitochondrial life cycle in cardiac mitochondrial physiology[J]. Front Cell Dev Biol, 2021, 9:625020. DOI: 10.3389/fcell.2021.625020.
|
[53] |
LEE J G, BAEK K, SOETANDYO N,et al. Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells[J]. Nat Commun, 2013, 4:1568. DOI: 10.1038/ncomms2532.
|
[54] |
OIKAWA D, GI M, KOSAKO H,et al. OTUD1 deubiquitinase regulates NF-κB- and KEAP1-mediated inflammatory responses and reactive oxygen species-associated cell death pathways[J]. Cell Death Dis, 2022, 13(8):694. DOI: 10.1038/s41419-022-05145-5.
|
[151] |
RUSILOWICZ-JONES E V, JARDINE J, KALLINOS A,et al. USP30 sets a trigger threshold for PINK1-PARKIN amplification of mitochondrial ubiquitylation[J]. Life Sci Alliance, 2020, 3(8):e202000768. DOI: 10.26508/lsa.202000768.
|
[152] |
KLUGE A F, LAGU B R, MAITI P,et al. Novel highly selective inhibitors of ubiquitin specific protease 30(USP30)accelerate mitophagy[J]. Bioorg Med Chem Lett, 2018, 28(15):2655-2659. DOI: 10.1016/j.bmcl.2018.05.013.
|
[153] |
Mission therapeutics announces US FDA approval to initi-ate phaseⅡ clinical trial of its lead asset MTX652 in acute kidney injury-mission therapeutics[EB/OL]. (2024-02-19)[2024-07-20].
|
[154] |
LIU X G, BALARAMAN K, LYNCH C C,et al. Novel ubiquitin specific protease-13 inhibitors alleviate neurodegenerative pathology[J]. Metabolites, 2021, 11(9):622. DOI: 10.3390/metabo11090622.
|
[155] |
TAN L L, SHAN H Y, HAN C,et al. Discovery of potent OTUB1/USP8 dual inhibitors targeting proteostasis in non-small-cell lung cancer[J]. J Med Chem, 2022, 65(20):13645-13659. DOI: 10.1021/acs.jmedchem.2c00408.
|
[156] |
WANG L H, LI M M, SHA B B,et al. Inhibition of deubiquitination by PR-619 induces apoptosis and autophagy via ubi-protein aggregation-activated ER stress in oesophageal squamous cell carcinoma[J]. Cell Prolif, 2021, 54(1):e12919. DOI: 10.1111/cpr.12919.
|
[157] |
WANG Y, PARK N Y, JANG Y,et al. Vitamin E γ-tocotrienol inhibits cytokine-stimulated NF-κB activation by induction of anti-inflammatory A20 via stress adaptive response due to modulation of sphingolipids[J]. J Immunol, 2015, 195(1):126-133. DOI: 10.4049/jimmunol.1403149.
|
[158] |
ZHANG W N, WANG M Z, SONG Z W,et al. Farrerol directly activates the deubiqutinase UCHL3 to promote DNA repair and reprogramming when mediated by somatic cell nuclear transfer[J]. Nat Commun, 2023, 14(1):1838. DOI: 10.1038/s41467-023-37576-9.
|
[55] |
SHARMA A, SMITH H J, YAO P,et al. Causal roles of mitochondrial dynamics in longevity and healthy aging[J]. EMBO Rep, 2019, 20(12):e48395. DOI: 10.15252/embr.201948395.
|
[56] |
YAN M L, MEI Y, ZHANG T J,et al. USP7 cardiomyocyte specific knockout causes disordered mitochondrial biogenesis and dynamics and early neonatal lethality in mice[J]. Int J Cardiol, 2024, 408:132149. DOI: 10.1016/j.ijcard.2024.132149.
|
[57] |
|
[58] |
LI Z Y, WANG Z Y, ZHONG C,et al. P53 upregulation by USP7-engaging molecular glues[J]. Sci Bull, 2024, 69(12):1936-1953. DOI: 10.1016/j.scib.2024.04.017.
|
[59] |
LIU J W, CAO L Z, WANG Y B,et al. The phosphorylation-deubiquitination positive feedback loop of the CHK2-USP7 axis stabilizes p53 under oxidative stress[J]. Cell Rep, 2024, 43(6):114366. DOI: 10.1016/j.celrep.2024.114366.
|
[60] |
ZENG M H, ZHANG X F, XING W,et al. Cigarette smoke extract mediates cell premature senescence in chronic obstructive pulmonary disease patients by up-regulating USP7 to activate p300-p53/p21 pathway[J]. Toxicol Lett, 2022, 359:31-45. DOI: 10.1016/j.toxlet.2022.01.017.
|
[61] |
HE Y H, LI W, LV D W,et al. Inhibition of USP7 activity selectively eliminates senescent cells in part via restoration of p53 activity[J]. Aging Cell, 2020, 19(3):e13117. DOI: 10.1111/acel.13117.
|
[62] |
ZHOU D,LIU P,SUN D W,et al. USP22 down-regulation facilitates human retinoblastoma cell aging and apoptosis via inhibiting TERT/P53 pathway[J]. Eur Rev Med Pharmacol Sci,2017,21(12):2785-2792.
|
[63] |
LI J, WANG Y, LUO Y,et al. USP5-Beclin 1 axis overrides p53-dependent senescence and drives Kras-induced tumorigenicity[J]. Nat Commun, 2022, 13(1):7799. DOI: 10.1038/s41467-022-35557-y.
|
[64] |
GUBAT J, SJÖSTRAND L, SELVARAJU K,et al. Loss of the proteasomal deubiquitinase USP14 induces growth defects and a senescence phenotype in colorectal cancer cells[J]. Sci Rep, 2024, 14(1):13037. DOI: 10.1038/s41598-024-63791-5.
|
[65] |
SCIORATI C, GAMBERALE R, MONNO A,et al. Pharmacological blockade of TNFα prevents sarcopenia and prolongs survival in aging mice[J]. Aging, 2020, 12(23):23497-23508. DOI: 10.18632/aging.202200.
|
[66] |
TILSTRA J S,CLAUSON C L,NIEDERNHOFER L J,et al. NF-κB in aging and disease[J]. Aging Dis,2011,2(6):449-465.
|
[67] |
PRIEM D, VAN LOO G, BERTRAND M J M. A20 and cell death-driven inflammation[J]. Trends Immunol, 2020, 41(5):421-435. DOI: 10.1016/j.it.2020.03.001.
|
[68] |
PENG X, ZHANG C, BAO J P,et al. A20 of nucleus pulposus cells plays a self-protection role via the nuclear factor-kappa B pathway in the inflammatory microenvironment[J]. Bone Joint Res, 2020, 9(5):225-235. DOI: 10.1302/2046-3758.95.BJR-2019-0230.R1.
|
[69] |
WANG D X, WANG E H, LI Y,et al. Anti-aging effect of Momordica charantia L. on d-Galactose-Induced subacute aging in mice by activating PI3K/AKT signaling pathway[J]. Molecules, 2022, 27(14):4502. DOI: 10.3390/molecules27144502.
|
[70] |
ORTEGA M A, ASÚNSOLO Á, LEAL J,et al. Implication of the PI3K/Akt/mTOR pathway in the process of incompetent valves in patients with chronic venous insufficiency and the relationship with aging[J]. Oxid Med Cell Longev, 2018, 2018:1495170. DOI: 10.1155/2018/1495170.
|
[71] |
WANG H, LIU Z N, SUN Z,et al. Ubiquitin specific peptidase 33 promotes cell proliferation and reduces apoptosis through regulation of the SP1/PI3K/AKT pathway in retinoblastoma[J]. Cell Cycle, 2021, 20(19):2066-2076. DOI: 10.1080/15384101.2021.1970305.
|
[72] |
GOLDBRAIKH D, NEUFELD D, EID-MUTLAK Y,et al. USP1 deubiquitinates Akt to inhibit PI3K-Akt-FoxO signaling in muscle during prolonged starvation[J]. EMBO Rep, 2020, 21(4):e48791. DOI: 10.15252/embr.201948791.
|
[73] |
DIAO W J, GUO Q S, ZHU C Y,et al. USP18 promotes cell proliferation and suppressed apoptosis in cervical cancer cells via activating AKT signaling pathway[J]. BMC Cancer, 2020, 20(1):741. DOI: 10.1186/s12885-020-07241-1.
|
[74] |
RANSOHOFF R M. How neuroinflammation contributes to neurodegeneration[J]. Science, 2016, 353(6301):777-783. DOI: 10.1126/science.aag2590.
|
[75] |
CUI L, HOU N N, WU H M,et al. Prevalence of Alzheimer's disease and Parkinson's disease in China:an updated systematical analysis[J]. Front Aging Neurosci, 2020, 12:603854. DOI: 10.3389/fnagi.2020.603854.
|
[76] |
LIU B H, RUAN J, CHEN M,et al. Deubiquitinating enzymes(DUBs):decipher underlying basis of neurodegenerative diseases[J]. Mol Psychiatry, 2022, 27(1):259-268. DOI: 10.1038/s41380-021-01233-8.
|
[77] |
ARK C W, JUNG B K, RYU K Y. Reduced free ubiquitin levels and proteasome activity in cultured neurons and brain tissues treated with amyloid beta aggregates[J]. Mol Brain, 2020, 13(1):89. DOI: 10.1186/s13041-020-00632-2.
|
[78] |
AL MAMUN A, RAHMAN M M, ZAMAN S,et al. Molecular insight into the crosstalk of UPS components and Alzheimer's disease[J]. Curr Protein Pept Sci, 2020, 21(12):1193-1201. DOI: 10.2174/1389203721666200923153406.
|
[79] |
FUNG T Y, IYASWAMY A, SREENIVASMURTHY S G,et al. Klotho an autophagy Stimulator as a potential therapeutic target for Alzheimer's disease:a review[J]. Biomedicines, 2022, 10(3):705. DOI: 10.3390/biomedicines10030705.
|
[80] |
YEATES E F A, TESCO G. The endosome-associated deubiquitinating enzyme USP8 regulates BACE1 enzyme ubiquitination and degradation[J]. J Biol Chem, 2016, 291(30):15753-15766. DOI: 10.1074/jbc.M116.718023.
|
[81] |
ZHANG M M, DENG Y, LUO Y W,et al. Control of BACE1 degradation and APP processing by ubiquitin carboxyl-terminal hydrolase L1[J]. J Neurochem, 2012, 120(6):1129-1138. DOI: 10.1111/j.1471-4159.2011.07644.x.
|
[82] |
LONSKAYA I, HEBRON M L, DESFORGES N M,et al. Tyrosine kinase inhibition increases functional parkin-Beclin-1 interaction and enhances amyloid clearance and cognitive performance[J]. EMBO Mol Med, 2013, 5(8):1247-1262. DOI: 10.1002/emmm.201302771.
|
[83] |
LIU X G, HEBRON M L, MULKI S,et al. Ubiquitin specific protease 13 regulates tau accumulation and clearance in models of Alzheimer's disease[J]. J Alzheimers Dis, 2019, 72(2):425-441. DOI: 10.3233/JAD-190635.
|
[84] |
WANG P, JOBERTY G, BUIST A,et al. Tau interactome mapping based identification of Otub1 as Tau deubiquitinase involved in accumulation of pathological Tau forms in vitro and in vivo[J]. Acta Neuropathol, 2017, 133(5):731-749. DOI: 10.1007/s00401-016-1663-9.
|
[85] |
KÖGLSBERGER S, CORDERO-MALDONADO M L, ANTONY P,et al. Gender-specific expression of ubiquitin-specific peptidase 9 modulates tau expression and phosphorylation:possible implications for tauopathies[J]. Mol Neurobiol, 2017, 54(10):7979-7993. DOI: 10.1007/s12035-016-0299-z.
|
[86] |
ALEXOPOULOU Z, LANG J, PERRETT R M,et al. Deubiquitinase Usp8 regulates α-synuclein clearance and modifies its toxicity in Lewy body disease[J]. Proc Natl Acad Sci USA, 2016, 113(32):E4688-E4697. DOI: 10.1073/pnas.1523597113.
|
[87] |
DURCAN T M, TANG M Y, PÉRUSSE J R,et al. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin[J]. EMBO J, 2014, 33(21):2473-2491. DOI: 10.15252/embj.201489729.
|
[88] |
PAI M V. Osteoporosis prevention and management[J]. J Obstet Gynaecol India, 2017, 67(4):237-242. DOI: 10.1007/s13224-017-0994-3.
|
[89] |
HUANG Y X, XIAO D, HUANG S H,et al. Circular RNA YAP1 attenuates osteoporosis through up-regulation of YAP1 and activation of Wnt/β-catenin pathway[J]. Biomed Pharmacother, 2020, 129:110365. DOI: 10.1016/j.biopha.2020.110365.
|
[90] |
CHEN M, HAN H, ZHOU S Q,et al. Morusin induces osteogenic differentiation of bone marrow mesenchymal stem cells by canonical Wnt/β-catenin pathway and prevents bone loss in an ovariectomized rat model[J]. Stem Cell Res Ther, 2021, 12(1):173. DOI: 10.1186/s13287-021-02239-3.
|
[91] |
CHAUGULE S, KIM J M, YANG Y S,et al. Deubiquitinating enzyme USP8 is essential for skeletogenesis by regulating Wnt signaling[J]. Int J Mol Sci, 2021, 22(19):10289. DOI: 10.3390/ijms221910289.
|
[92] |
ZHU B, XUE F, LI G Y,et al. CRYAB promotes osteogenic differentiation of human bone marrow stem cells via stabilizing β-catenin and promoting the Wnt signalling[J]. Cell Prolif, 2020, 53(1):e12709. DOI: 10.1111/cpr.12709.
|
[93] |
ZHOU F F, LI F, FANG P F,et al. Ubiquitin-specific protease 4 antagonizes osteoblast differentiation through dishevelled[J]. J Bone Miner Res, 2016, 31(10):1888-1898. DOI: 10.1002/jbmr.2863.
|
[94] |
GREENBLATT M B, SHIN D Y, OH H,et al. MEKK2 mediates an alternative β-catenin pathway that promotes bone formation[J]. Proc Natl Acad Sci USA, 2016, 113(9):E1226-E1235. DOI: 10.1073/pnas.1600813113.
|
[95] |
WANG X P, ZOU C C, HOU C J,et al. Extracellular vesicles from bone marrow mesenchymal stem cells alleviate osteoporosis in mice through USP7-mediated YAP1 protein stability and the Wnt/β-catenin pathway[J]. Biochem Pharmacol, 2023, 217:115829. DOI: 10.1016/j.bcp.2023.115829.
|
[96] |
JIANG L, YANG Q H, GAO J J,et al. BK channel deficiency in osteoblasts reduces bone formation via the Wnt/β-catenin pathway[J]. Mol Cells, 2021, 44(8):557-568. DOI: 10.14348/molcells.2021.0004.
|