Comparison of Fitting and Predicting Effects of Models on Mumps in China
1.Jingzhou Municipal Center for Disease Control and Prevention,Jingzhou 434000,China
2.Hubei Provincial Center for Disease Control and Prevention,Wuhan 430000,China
*Corresponding author: CHEN Hongying,Chief physician;E-mail: 348166087@qq.com
[1]RUBIN S,ECKHAUS M,RENNICK L J,et al.Molecular biology,pathogenesis and pathology of mumps virus[J].J Pathol,2015,235(2):242-252.DOI:10.1002/path.4445.
[2]KAAIJK P,GOUMA S,HULSCHER H I,et al.Dynamics of the serologic response in vaccinated and unvaccinated mumps cases during an epidemic[J].Hum Vaccin Immunother,2015,11(7):1754-1761.DOI:10.1080/21645515.2015.1040967.
[3]YANG Q Y,YANG Z C,DING H Y,et al.The relationship between meteorological factors and mumps incidence in Guangzhou,China,2005—2012[J].Hum Vaccin Immunother,2014,10(8):2421-2432.DOI:10.4161/hv.29286.
[4]李东,陈致飞,杨秀惠,等.福建省2005—2017年流行性腮腺炎疫情及病原学监测分析[J].中华流行病学杂志,2018,39(10):1356-1361.DOI:10.3760/cma.j.issn.0254-6450.2018.10.013.
[5]REN H,LI J,YUAN Z A,et al.The development of a combined mathematical model to forecast the incidence of hepatitis E in Shanghai,China[J].BMC Infect Dis,2013,13(1):421-426.DOI:10.1186/1471-2334-13-421.
[6]WEI W D,JIANG J J,GAO L,et al.A new hybrid model using an autoregressive integrated moving average and a generalized regression neural network for the incidence of tuberculosis in Heng County,China[J].Am J Trop Med Hyg,2017,97(3):799-805.DOI:10.4269/ajtmh.16-0648.
[7]孙振球.医学统计学[M].4版.北京:人民卫生出版社,2014.
[8]张文彤,董伟.SPSS统计分析高级教程[M].北京:高等教育出版社,2013.
[9]王小川,史峰,郁磊,等.MATLAB神经网络43个案例分析[M].北京:北京航空航天大学出版社,2013.
[10]BATES J M,GRANGER C W J.The combination of forecasts[J].J Oper Res Soc,1969,20(4):451-468.DOI:10.1057/jors.1969.103.
[11]刘建华.手足口病发病趋势预测及传播动力学模拟研究[D].武汉:华中科技大学,2017.
[12]平平.组合预测模型在吉林省生猪价格预测中的应用[D].长春:吉林大学,2010.
[13]刘天,姚梦雷,黄继贵,等.组合预测模型在丙型病毒性肝炎发病率预测中的应用[J].中国疫苗和免疫,2018,24(6):674-679.DOI:1006-916X(2018)06-0674-06.
[14]陈明.MATLAB神经网络原理与实例精解[M].北京:清华大学出版社,2013.
[15]刘静.葫芦岛市2011—2017年流感样病例流行病学特征分析及基于神经网络的预警模型构建[D].沈阳:中国医科大学,2018.